Nguyen, Huong T. T.; Nguyen, Thang N.; Vu, Luong T. Asymptotically almost periodic solutions to nonlocal differential equations. (English) Zbl 1516.34113 Rocky Mt. J. Math. 52, No. 6, 2113-2127 (2022). The paper is focused on the nonlocal fractional differential equation with an initial condition \[ \left\{\begin{array}{l}\displaystyle\frac{d}{dt}\left[k*(u-u_0)\right](t)+Au(t)=f(t,u(t)),\,\,\,t>0,\\ u(0)=u_0, \end{array}\right.\tag{1} \] where \(u:[0,\infty)\to H\) is the unknown function, \(H\) is a separable Hilbert space, the kernel \(k\in L_{\mathrm{loc}}^1(\mathbb{R}^+)\), \(A:D(A)\subset H\to H\) is an unbounded linear operator, the function \(f:\mathbb{R}^+\times H\to H\), and \(k*(u-u_0)\) is the Laplace convolution of functions \(k\) and \(u-u_0\), defined by \((k*(u-u_0))(t)=\int_0^tk(t-s)(u(s)-u_0(s))\,ds\). Under some assumptions on \(k\), \(A\) and \(f\), the authors prove the existence of asymptotically almost periodic mild solutions of problem \((1)\). Reviewer: Rodica Luca (Iaşi) MSC: 34K30 Functional-differential equations in abstract spaces 34K14 Almost and pseudo-almost periodic solutions to functional-differential equations 47N20 Applications of operator theory to differential and integral equations Keywords:nonlocal differential equations; asymptotic almost periodic solutions; almost periodic solutions to PDEs; fixed-point × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] R. P. Agarwal, B. de Andrade, and C. Cuevas, “On type of periodicity and ergodicity to a class of fractional order differential equations”, Adv. Difference Equ. (2010), art. id. 179750. · Zbl 1194.34007 · doi:10.1186/1687-1847-2010-179750 [2] D. Araya and C. Lizama, “Almost automorphic mild solutions to fractional differential equations”, Nonlinear Anal. 69:11 (2008), 3692-3705. · Zbl 1166.34033 · doi:10.1016/j.na.2007.10.004 [3] W. Arendt and C. J. K. Batty, “Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half-line”, Bull. London Math. Soc. 31:3 (1999), 291-304. · Zbl 0952.34048 · doi:10.1112/S0024609398005657 [4] W. Arendt and J. Prüss, “Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations”, SIAM J. Math. Anal. 23:2 (1992), 412-448. · Zbl 0765.45009 · doi:10.1137/0523021 [5] C. J. K. Batty, W. Hutter, and F. Räbiger, “Almost periodicity of mild solutions of inhomogeneous periodic Cauchy problems”, J. Differential Equations 156:2 (1999), 309-327. · Zbl 0934.34049 · doi:10.1006/jdeq.1998.3610 [6] J. Blot, P. Cieutat, G. M. N’Guérékata, and D. Pennequin, “Superposition operators between various almost periodic function spaces and applications”, Commun. Math. Anal. 6:1 (2009), 42-70. · Zbl 1179.47055 [7] D. N. Cheban, Asymptotically almost periodic solutions of differential equations, Hindawi, New York, 2009. · Zbl 1222.34002 · doi:10.1155/9789774540998 [8] P. Clément and J. A. Nohel, “Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels”, SIAM J. Math. Anal. 12:4 (1981), 514-535. · Zbl 0462.45025 · doi:10.1137/0512045 [9] E. Cuesta, “Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations”, pp. 277-285 in Dynamical systems and differential equations (6th AIMS International Conference, Poitiers, 2006), edited by B. Belinskiy et al., 2007. Unnumbered special issue of Discrete Contin. Dyn. Syst. · Zbl 1163.45306 · doi:10.3934/proc.2007.2007.277 [10] A. M. Fink, Almost periodic differential equations, Lecture Notes in Mathematics 377, Springer, 1974. · Zbl 0325.34039 [11] Y. Hino, T. Naito, N. V. Minh, and J. S. Shin, Almost periodic solutions of differential equations in Banach spaces, Stability and Control: Theory, Methods and Applications 15, Taylor & Francis, 2002. · Zbl 1026.34001 · doi:10.1201/b16833 [12] V. G. Jakubowski and P. Wittbold, “On a nonlinear elliptic-parabolic integro-differential equation with \[L^1\]-data”, J. Differential Equations 197:2 (2004), 427-445. · Zbl 1036.35150 · doi:10.1016/j.jde.2003.10.012 [13] T. D. Ke, N. N. Thang, and L. T. P. Thuy, “Regularity and stability analysis for a class of semilinear nonlocal differential equations in Hilbert spaces”, J. Math. Anal. Appl. 483:2 (2020), art. id. 123655. · Zbl 1429.34068 · doi:10.1016/j.jmaa.2019.123655 [14] V. Keyantuo, C. Lizama, and M. Warma, “Asymptotic behavior of fractional-order semilinear evolution equations”, Differential Integral Equations 26:7-8 (2013), 757-780. · Zbl 1299.35309 · doi:10.57262/die/1369057816 [15] B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press, 1982. · Zbl 0499.43005 [16] C. Lizama and G. M. N’Guérékata, “Bounded mild solutions for semilinear integro differential equations in Banach spaces”, Integral Equations Operator Theory 68:2 (2010), 207-227. · Zbl 1209.45007 · doi:10.1007/s00020-010-1799-2 [17] R. K. Miller, “On Volterra integral equations with nonnegative integrable resolvents”, J. Math. Anal. Appl. 22 (1968), 319-340. · Zbl 0167.40901 · doi:10.1016/0022-247X(68)90176-5 [18] N. T. Nguyen, “Notes on ultraslow nonlocal telegraph evolution equations”, Proc. Amer. Math. Soc. 151 (2023), 583-593. · Zbl 1504.35078 · doi:10.1090/proc/15877 [19] N. T. Nguyen, D. K. Tran, and V. D. Nguyen, “Stability analysis for nonlocal evolution equations involving infinite delays”, preprint, available at https://viasm.edu.vn/Cms_Data/Contents/viasm/Media/2021/Preprint_2122.pdf. To appear in J. Fixed Point Theory Appl. [20] R. Ponce, “Bounded mild solutions to fractional integro-differential equations in Banach spaces”, Semigroup Forum 87:2 (2013), 377-392. · Zbl 1285.34071 · doi:10.1007/s00233-013-9474-y [21] J. Prüss, Evolutionary integral equations and applications, Monographs in Mathematics 87, Birkhäuser, 1993. · Zbl 0784.45006 · doi:10.1007/978-3-0348-8570-6 [22] D.-K. Tran and T.-P.-T. Lam, “Nonlocal final value problem governed by semilinear anomalous diffusion equations”, Evol. Equ. Control Theory 9:3 (2020), 891-914. · Zbl 1455.35302 · doi:10.3934/eect.2020038 [23] V. Vergara and R. Zacher, “Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods”, SIAM J. Math. Anal. 47:1 (2015), 210-239. · Zbl 1317.45006 · doi:10.1137/130941900 [24] V. Vergara and R. Zacher, “Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations”, J. Evol. Equ. 17:1 (2017), 599-626. · Zbl 1365.35218 · doi:10.1007/s00028-016-0370-2 [25] S. Zaidman, Almost-periodic functions in abstract spaces, Research Notes in Mathematics 126, Pitman, 1985. · Zbl 0648.42006 [26] J. Q. Zhao, Y. K. Chang, and G. M. N’Guérékata, “Asymptotic behavior of mild solutions to semilinear fractional differential equations”, J. Optim. Theory Appl. 156:1 (2013), 106-114 · Zbl 1281.34014 · doi:10.1007/s10957-012-0202-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.