Fakhry, Rami; Zhan, Dapeng Existence of multi-point boundary Green’s function for chordal Schramm-Loewner evolution (SLE). (English) Zbl 1517.60107 Electron. J. Probab. 28, Paper No. 46, 29 p. (2023). Summary: In the paper we prove that, for \(\kappa \in (0,8)\), the \(n\)-point boundary Green’s function of exponent \(\frac{8}{\kappa }-1\) for chordal SLE\(_\kappa\) exists. We also prove that the convergence is uniform over compact sets and the Green’s function is continuous. We also give up-to-constant bounds for the Green’s function. MSC: 60J67 Stochastic (Schramm-)Loewner evolution (SLE) 60J45 Probabilistic potential theory 31C15 Potentials and capacities on other spaces Keywords:Green’s function; SLE; Schramm-Loewner evolution × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] Lars V. Ahlfors. Conformal invariants: topics in geometric function theory. McGraw-Hill Book Co., New York, 1973. · Zbl 0272.30012 [2] Tom Alberts and Michael Kozdron. Intersection probabilities for a chordal SLE path and a semicircle, Electron. Comm. Probab., 13:448-460, 2008. · Zbl 1187.82034 [3] Tom Alberts and Scott Sheffield. Hausdorff dimension of the SLE curve intersected with the real line, Electron J. Probab., 40:1166-1188, 2008. · Zbl 1192.60025 [4] Vincent Beffara. The dimension of SLE curves, Ann. Probab., 36:1421-1452, 2008. · Zbl 1165.60007 [5] Alex Karrila, Kalle Kytölä and Eveliina Peltola. Boundary Correlations in Planar LERW and UST, Commu. Math. Phys., 376:2065-2145, 2020. · Zbl 1441.82023 [6] Gregory Lawler. Schramm-Loewner evolution, in statistical mechanics, S. Sheffield and T. Spencer, ed., IAS/Park City Mathematical Series, AMS, 231-295, 2009. · Zbl 1180.82002 [7] Gregory Lawler. Minkowski content of the intersection of a Schramm-Loewner evolution (SLE) curve with the real line, J. Math. Soc. Japan., 67:1631-1669, 2015. · Zbl 1362.60069 [8] Gregory Lawler. Conformally invariant processes in the plane, Amer. Math. Soc., 2005. · Zbl 1074.60002 [9] Gregory Lawler and Mohammad Rezaei. Minkowski content and natural parametrization for the Schramm-Loewner evolution. Ann. Probab., 43(3):1082-1120, 2015. · Zbl 1331.60165 [10] Gregory Lawler, Oded Schramm and Wendelin Werner. Values of Brownian intersection exponents I: half-plane exponents. Acta Math., 187(2):237-273, 2001. · Zbl 1005.60097 [11] Gregory Lawler, Oded Schramm and Wendelin Werner. Conformal restriction: the chordal case, J. Amer. Math. Soc., 16(4): 917-955, 2003. · Zbl 1030.60096 [12] Gregory Lawler and Scott Sheffield. A natural parametrization for the Schramm-Loewner evolution. Annals of Probab., 39(5):1896-1937, 2011. · Zbl 1234.60087 [13] Greg Lawler and Brent Werness. Multi-point Green’s function for SLE and an estimate of Beffara, Annals of Prob. 41:1513-1555, 2013. · Zbl 1277.60134 [14] Greg Lawler and Wang Zhou. SLE curves and natural parametrization. Ann. Probab., 41(3A):1556-1584, 2013. · Zbl 1288.60098 [15] Benjamin Mackey and Dapeng Zhan. Multipoint Estimates for Radial and Whole-plane SLE. J. Stat. Phys., 175:879-903, 2019. · Zbl 1421.30010 [16] Jason Miller and Scott Sheffield. Imaginary geometry I: intersecting SLEs. Probab. Theory Relat. Fields, 164(3):553-705, 2016. · Zbl 1336.60162 [17] Mohammad Rezaei and Dapeng Zhan. Green’s function for chordal SLE curves. Probab. Theory Rel., 171:1093-1155, 2018. · Zbl 1428.60118 [18] Mohammad Rezaei and Dapeng Zhan. Higher moments of the natural parameterization for SLE curves, Ann. IHP. 53(1):182-199, 2017. · Zbl 1361.60074 [19] Daniel Revuz and Marc Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. · Zbl 0731.60002 [20] Steffen Rohde and Oded Schramm. Basic properties of SLE. Ann. Math., 161:879-920, 2005. · Zbl 1081.60069 [21] Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221-288, 2000. · Zbl 0968.60093 [22] Dapeng Zhan. The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36:467-529, 2008 · Zbl 1153.60057 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.