Han, Bui Thi Ngoc; Linh, Nguyen Thi The generalized nonlocal boundary condition for fractional Langevin equation with a weakly singular source. (English) Zbl 1518.26006 Rocky Mt. J. Math. 52, No. 6, 1983-2002 (2022). A class of nonlinear Langevin equations with fractional derivatives of a function depending on another function with generalized nonlocal conditions is investigated. The source function of the problem may have a singularity that appears from the discontinuity of the source function at the initial point. By constructing the formal solution using the Mittag-Lefler function and two parameters and by applying some well-known fixed point theorem, it is proved that the problem has at least one or an unique mild solution. Finally, two examples are given to illustrate the main results. Reviewer: Xiping Liu (Shanghai) MSC: 26A33 Fractional derivatives and integrals 34A08 Fractional ordinary differential equations 34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations Keywords:Langevin equation; fractional derivatives; nonlocal boundary conditions; fixed point theorems × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] A. Aldoghaither, D.-Y. Liu, and T.-M. Laleg-Kirati, “Modulating functions based algorithm for the estimation of the coefficients and differentiation order for a space-fractional advection-dispersion equation”, SIAM J. Sci. Comput. 37:6 (2015), A2813-A2839. · Zbl 1329.35341 · doi:10.1137/15M1008993 [2] R. Almeida, “A Caputo fractional derivative of a function with respect to another function”, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460-481. · Zbl 1465.26005 · doi:10.1016/j.cnsns.2016.09.006 [3] R. Ashurov and S. Umarov, “Determination of the order of fractional derivative for subdiffusion equations”, Fract. Calc. Appl. Anal. 23:6 (2020), 1647-1662. · Zbl 1474.35633 · doi:10.1515/fca-2020-0081 [4] O. Baghani, “On fractional Langevin equation involving two fractional orders”, Commun. Nonlinear Sci. Numer. Simul. 42 (2017), 675-681. · Zbl 1473.82025 · doi:10.1016/j.cnsns.2016.05.023 [5] H. Baghani, J. Alzabut, and J. J. Nieto, “A coupled system of Langevin differential equations of fractional order and associated to antiperiodic boundary conditions”, Math. Meth. Appl. Sci. (2020), 1-11. · Zbl 07924822 · doi:10.1002/mma.6639 [6] A. Berhail, N. Tabouche, M. M. Matar, and J. Alzabut, “Boundary value problem defined by system of generalized Sturm-Liouville and Langevin Hadamard fractional differential equations”, Math. Meth. Appl. Sci. (202), 1-13. · Zbl 07924814 · doi:10.1002/mma.6507 [7] J. P. Bouchaud and R. Cont, “A Langevin approach to stock market fluctuations and crashes”, Eur. Phys. J. B 6 (1998), 542-550. · doi:10.1007/s100510050582 [8] L. Byszewski, “Strong maximum and minimum principles for parabolic problems with nonlocal inequalities”, Z. Angew. Math. Mech. 70:3 (1990), 202-206. · Zbl 0709.35018 · doi:10.1002/zamm.19900700312 [9] L. Byszewski, “Strong maximum principles for parabolic nonlinear problems with nonlocal inequalities together with integrals”, J. Appl. Math. Stochastic Anal. 3:1 (1990), 65-79. · Zbl 0726.35023 · doi:10.1155/S1048953390000065 [10] L. Byszewski, “Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem”, J. Math. Anal. Appl. 162:2 (1991), 494-505. · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U [11] L. Byszewski, “Application of properties of the right-hand sides of evolution equations to an investigation of nonlocal evolution problems”, Nonlinear Anal. 33:5 (1998), 413-426. · Zbl 0933.34064 · doi:10.1016/S0362-546X(97)00594-4 [12] L. Byszewski and V. Lakshmikantham, “Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space”, Appl. Anal. 40:1 (1991), 11-19. · Zbl 0694.34001 · doi:10.1080/00036819008839989 [13] J. Cheng, J. Nakagawa, M. Yamamoto, and T. Yamazaki, “Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation”, Inverse Problems 25:11 (2009), art. id. 115002. · Zbl 1181.35322 · doi:10.1088/0266-5611/25/11/115002 [14] W. T. Coffey and Y. P. Kalmykov, The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering, 2nd ed., World Scientific Series in Contemporary Chemical Physics 27, World Scientific, Hackensack, NJ, 2012. · Zbl 1269.82002 · doi:10.1142/8195 [15] D. Delbosco and L. Rodino, “Existence and uniqueness for a nonlinear fractional differential equation”, J. Math. Anal. Appl. 204:2 (1996), 609-625. · Zbl 0881.34005 · doi:10.1006/jmaa.1996.0456 [16] N. M. Dien, “Existence and continuity results for a nonlinear fractional Langevin equation with a weakly singular source”, J. Integral Equations Appl. 33:3 (2021), 349-369. · Zbl 1505.34018 · doi:10.1216/jie.2021.33.349 [17] N. M. Dien, “Generalized weakly singular Gronwall-type inequalities and their applications to fractional differential equations”, Rocky Mountain J. Math. 51:2 (2021), 689-707. · Zbl 1483.26010 · doi:10.1216/rmj.2021.51.689 [18] N. M. Dien and D. D. Trong, “Stability of solutions of a class of nonlinear fractional diffusion equations with respect to a pseudo-differential operator”, Math. Methods Appl. Sci. 42:8 (2019), 2513-2532. · Zbl 1414.35264 · doi:10.1002/mma.5528 [19] N. M. Dien and D. D. Trong, “On the nonlinear generalized langevin equation involving \[\psi \]-Caputo fractional derivatives”, Fractals 29:06 (2021), art. id. 2150128. · Zbl 1493.34021 · doi:10.1142/S0218348X21501280 [20] N. M. Dien, E. Nane, and D. D. Trong, “The nonlinear fractional diffusion equations with Nagumo-type sources and perturbed orders”, 2020. [21] C. H. Eab and S. C. Lim, “Fractional Langevin equations of distributed order”, Phys. Rev. E (3) 83:3 (2011), 031136, 10. · doi:10.1103/PhysRevE.83.031136 [22] H. Fazli and J. J. Nieto, “Fractional Langevin equation with anti-periodic boundary conditions”, Chaos Solitons and Fractals 114 (2018), 332-337. · Zbl 1415.34016 · doi:10.1016/j.chaos.2018.07.009 [23] H. Fazli, H. Sun, and S. Aghchi, “Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions”, Int. J. Comput. Math. 98:1 (2021), 1-10. · Zbl 1498.34024 · doi:10.1080/00207160.2020.1720662 [24] R. A. C. Ferreira, “A Nagumo-type uniqueness result for an \[n\] th order differential equation”, Bull. Lond. Math. Soc. 45:5 (2013), 930-934. · Zbl 1295.34015 · doi:10.1112/blms/bdt022 [25] T. C. Gard, “A generalization of the Nagumo uniqueness criterion”, Proc. Amer. Math. Soc. 70:2 (1978), 167-172. · Zbl 0389.34003 · doi:10.2307/2042082 [26] A. Granas and J. Dugundji, Fixed point theory, Springer, 2003. · Zbl 1025.47002 · doi:10.1007/978-0-387-21593-8 [27] E. J. Hinch, “Application of the Langevin equation to fluid suspensions”, J. Fluid Mech. 72:3 (1975), 499-511. · Zbl 0327.76044 · doi:10.1017/S0022112075003102 [28] A. Iomin, “Fractional evolution in quantum mechanics”, Chaos, Solitons & Fractals: \(X 1 (2019)\), art. id. 100001. · doi:10.1016/j.csfx.2018.100001 [29] M. Kateregga, S. Mataramvura, and D. Taylor, “Parameter estimation for stable distributions with application to commodity futures log-returns”, Cogent Economics & Finance 5:1 (2017), art. id. 1318813. · doi:10.1080/23322039.2017.1318813 [30] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. · Zbl 1092.45003 [31] V. Lakshmikantham and S. Leela, “Nagumo-type uniqueness result for fractional differential equations”, Nonlinear Anal. 71:7-8 (2009), 2886-2889. · Zbl 1177.34003 · doi:10.1016/j.na.2009.01.169 [32] P. Langevin, “Sur la théorie du mouvement brownien”, C. R. Acad. Sci. Paris. 146 (1908), 530-533. · JFM 39.0847.03 [33] R. L. Magin, “Fractional calculus in bioengineering”, Crit. Rev. Biomed. Eng. 32:1 (2004), 1-104. · doi:10.1615/critrevbiomedeng.v32.i1.10 [34] A. Salem and B. Alghamdi, “Multi-strip and multi-point boundary conditions for fractional Langevin equation”, Fractal Fract. 4:2 (2020). · doi:10.3390/fractalfract4020018 [35] J. Schluttig, D. Alamanova, V. Helms, and U. S. Schwarz, “Dynamics of protein-protein encounter: a Langevin equation approach with reaction patches”, J. Chem. Phys. 129:15 (2008), art. id. 155106. · doi:10.1063/1.2996082 [36] W. R. Schneider, “Completely monotone generalized Mittag-Leffler functions”, Exposition. Math. 14:1 (1996), 3-16. · Zbl 0843.60024 [37] C.-S. Sin and L. Zheng, “Existence and uniqueness of global solutions of Caputo-type fractional differential equations”, Fract. Calc. Appl. Anal. 19:3 (2016), 765-774. · Zbl 1345.34008 · doi:10.1515/fca-2016-0040 [38] C. Torres, “Existence of solution for fractional Langevin equation: variational approach”, Electron. J. Qual. Theory Differ. Equ. (2014), art. id. 54. · Zbl 1324.34014 · doi:10.14232/ejqtde.2014.1.54 [39] D. D. Trong, E. Nane, N. D. Minh, and N. H. Tuan, “Continuity of solutions of a class of fractional equations”, Potential Anal. 49:3 (2018), 423-478. · Zbl 1407.35205 · doi:10.1007/s11118-017-9663-5 [40] D. D. Trong, D. N. D. Hai, and N. M. Dien, “On a time-space fractional backward diffusion problem with inexact orders”, Comput. Math. Appl. 78:5 (2019), 1572-1593. · Zbl 1442.35527 · doi:10.1016/j.camwa.2019.03.014 [41] D. D. Trong, N. M. Dien, and T. Q. Viet, “Global solution of space-fractional diffusion equations with nonlinear reaction source terms”, Appl. Anal. 99:15 (2020), 2707-2737. · Zbl 1450.35281 · doi:10.1080/00036811.2019.1582030 [42] T. Q. Viet, N. M. Dien, and D. D. Trong, “Stability of solutions of a class of nonlinear fractional Laplacian parabolic problems”, J. Comput. Appl. Math. 355 (2019), 51-76. · Zbl 1419.35228 · doi:10.1016/j.cam.2019.01.007 [43] G. Wang, J. Qin, L. Zhang, and D. Baleanu, “Explicit iteration to a nonlinear fractional Langevin equation with nonseparated integro-differential strip-multi-point boundary conditions”, Chaos Solitons Fractals 131 (2020), 109476, 6. · Zbl 1495.34013 · doi:10.1016/j.chaos.2019.109476 [44] K. Wódkiewicz and M. S. Zubairy, “Exact solution of a nonlinear Langevin equation with applications to photoelectron counting and noise-induced instability”, J. Math. Phys. 24:6 (1983), 1401-1404. · Zbl 0513.60057 · doi:10.1063/1.525874 [45] T. Yu, K. Deng, and M. Luo, “Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders”, Commun. Nonlinear Sci. Numer. Simul. 19:6 (2014), 1661-1668. · Zbl 1457.34020 · doi:10.1016/j.cnsns.2013.09.035 [46] H. Zhou, J. Alzabut, and L. Yang, “On fractional Langevin differential equations with anti-periodic boundary conditions”, Eur. Phys. J. Spec. Top. 226:16 (2017), 3577-3590 · doi:10.1140/epjst/e2018-00082-0 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.