×

Method of time-discretization to a multiterm nonlinear retarded differential equation. (English) Zbl 1518.34078

Summary: We study the existence of a strong solution for a class of second-order nonlinear retarded differential equations involving a lower-order fractional term. We prove the existence result by using Rothe’s time-discretization method. We also provide some examples to examine the existence of solutions for a class of second-order fractional differential equations.

MSC:

34K30 Functional-differential equations in abstract spaces
34K37 Functional-differential equations with fractional derivatives
39A12 Discrete version of topics in analysis

References:

[1] S. Agarwal and D. Bahuguna, “Method of semidiscretization in time to nonlinear retarded differential equations with nonlocal history conditions”, Int. J. Math. Math. Sci. 2004:37-40 (2004), 1943-1956. · Zbl 1122.34344 · doi:10.1155/S0161171204401173
[2] D. Bahuguna and A. Jaiswal, “Rothe time discretization method for fractional integro-differential equations”, Int. J. Comput. Methods Eng. Sci. Mech. 20:6 (2019), 540-547. · Zbl 07880255 · doi:10.1080/15502287.2019.1600075
[3] D. Bahuguna and V. Raghavendra, “Rothe’s method to parabolic integro-differential equations via abstract integro-differential equations”, Appl. Anal. 33:3-4 (1989), 153-167. · Zbl 0654.34054 · doi:10.1080/00036818908839869
[4] D. Bahuguna, S. Abbas, and J. Dabas, “Partial functional differential equation with an integral condition and applications to population dynamics”, Nonlinear Anal. 69:8 (2008), 2623-2635. · Zbl 1155.35478 · doi:10.1016/j.na.2007.08.041
[5] A. Bellen and M. Zennaro, Numerical methods for delay differential equations, Oxford University Press, 2003. · Zbl 1038.65058
[6] A. Bouziani and R. Mechri, “The Rothe’s method to a parabolic integrodifferential equation with a nonclassical boundary conditions”, Int. J. Stoch. Anal. 2010 (2010), art. id. 519684. · Zbl 1194.35201 · doi:10.1155/2010/519684
[7] A. Chaoui and A. Hallaci, “On the solution of a fractional diffusion integrodifferential equation with Rothe time discretization”, Numer. Funct. Anal. Optim. 39:6 (2018), 643-654. · Zbl 1474.45063 · doi:10.1080/01630563.2018.1424200
[8] M. Dehghan and R. Salehi, “Solution of a nonlinear time-delay model in biology via semi-analytical approaches”, Comput. Phys. Comm. 181:7 (2010), 1255-1265. · Zbl 1219.65062 · doi:10.1016/j.cpc.2010.03.014
[9] S. A. Dubey, “The method of lines applied to nonlinear nonlocal functional differential equations”, J. Math. Anal. Appl. 376:1 (2011), 275-281. · Zbl 1216.34076 · doi:10.1016/j.jmaa.2010.10.024
[10] A. Jaiswal and D. Bahuguna, “A second order evolution equation with a lower order fractional term in a Banach space”, AIP Conf. Proc. 2095:1 (2019), art. id. 030001. · doi:10.1063/1.5097512
[11] G. W. Leibniz, Letter to G. F. A. L’Hospital (Hanover, September 30, 1695), pp. 301-302 in Mathematische Schriften, vol. 2, Georg Olms, Hildesheim, 1849. Reprinted 1962.
[12] Y. Lin and C. Xu, “Finite difference/spectral approximations for the time-fractional diffusion equation”, J. Comput. Phys. 225:2 (2007), 1533-1552. · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[13] M. Maqbul and A. Raheem, “Time-discretization schema for a semilinear pseudo-parabolic equation with integral conditions”, Appl. Numer. Math. 148 (2020), 18-27. · Zbl 1427.35238 · doi:10.1016/j.apnum.2019.09.002
[14] N. Merazga and A. Bouziani, “Rothe method for a mixed problem with an integral condition for the two-dimensional diffusion equation”, Abstr. Appl. Anal. 2003:16 (2003), art. id. 639847. · Zbl 1065.35026 · doi:10.1155/S1085337503305019
[15] S. Migórski and S. Zeng, “The Rothe method for multi-term time fractional integral diffusion equations”, Discrete Contin. Dyn. Syst. Ser. B 24:2 (2019), 719-735. · Zbl 1516.35440 · doi:10.3934/dcdsb.2018204
[16] J. Nečas, “Application of Rothe’s method to abstract parabolic equations”, Czechoslovak Math. J. 24:3 (1974), 496-500. · Zbl 0311.35059 · doi:10.21136/CMJ.1974.101263
[17] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44, Springer, New York, 1983. · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[18] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering 198, Academic Press, San Diego, CA, 1999. · Zbl 0924.34008
[19] A. Raheem and D. Bahuguna, “A study of delayed cooperation diffusion system with Dirichlet boundary conditions”, Appl. Math. Comput. 218:8 (2011), 4169-4176. · Zbl 1247.65125 · doi:10.1016/j.amc.2011.09.048
[20] A. Raheem and D. Bahuguna, “Delay differential equations with homogeneous integral conditions”, Electron. J. Differential Equations 2013 (2013), art. id. 78. · Zbl 1295.35183
[21] A. Raheem and D. Bahuguna, “Rothe’s method for solving some fractional integral diffusion equation”, Appl. Math. Comput. 236 (2014), 161-168. · Zbl 1334.39048 · doi:10.1016/j.amc.2014.03.025
[22] B. Ross, “Fractional calculus”, Math. Mag. 50:3 (1977), 115-122. · Zbl 0371.26004 · doi:10.1080/0025570X.1977.11976630
[23] E. Rothe, “Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben”, Math. Ann. 102:1 (1930), 650-670. · JFM 56.1076.02 · doi:10.1007/BF01782368
[24] J. Tumwiine, S. Luckhaus, J. Y. T. Mugisha, and L. S. Luboobi, “An age-structured mathematical model for the within host dynamics of malaria and the immune system”, J. Math. Model. Algorithms 7:1 (2008), 79-97. · Zbl 1132.92016 · doi:10.1007/s10852-007-9075-4
[25] Y. Yan and C. Kou, “Stability analysis of a fractional differential model of HIV infection of \[{\rm CD4}^+\] T-cells with time delay”, Math. Comput. Simulation 82:9 (2012), 1572-1585. · Zbl 1253.92037 · doi:10.1016/j.matcom.2012.01.004
[26] Y. Zhou, Basic theory of fractional differential equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. · Zbl 1336.34001 · doi:10.1142/9069
[27] Y. Zhou, Fractional evolution equations and inclusions: analysis and control, Academic Press, London, 2016. · Zbl 1343.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.