×

Absolute normalized norms in \(\mathbb R^2\) and Heinz means constant. (English) Zbl 1518.46008

Summary: In this paper, we calculate the precise values of the Heinz means constant under the absolute normalized norms in \(\mathbb{R}^2\). The conclusions do not only contain some previous results, but also give the exact values of the Heinz means constant for some new concrete Banach spaces.

MSC:

46B20 Geometry and structure of normed linear spaces
46B25 Classical Banach spaces in the general theory
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] J. Alonso and E. Llorens-Fuster, Geometric mean and triangles inscribed in a semicircle in Banach spaces, J. Math. Anal. Appl. 340 (2008), 1271-1283. · Zbl 1153.46007
[2] J. Banaś and K. Frączek, Deformation of Banach spaces, Comment. Math. Univ. Carolinae 34 (1993), 47-53. · Zbl 0817.46016
[3] M. Baronti, E. Casin and P. Papini, Triangles inscribed in a semicircle, in Minkowski plane, and in normed spaces, J. Math. Anal. Appl. 252 (2000), 121-146. · Zbl 0981.46013
[4] F. Bonsall and J. Duncan, Numerical Ranges II, London Mathematical Society Lecture Notes Series, vol. 10, Cambridge Univ. Press, New York, 1973. · Zbl 0262.47001
[5] J. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
[6] M. Dinarvand, Heinz means and triangles inscribed in a semicircle in Banach spaces, Math. Inequal. Appl. 22 (2019), 275-290. · Zbl 1428.46009
[7] T. Ikeda and M. Kato, Notes on von Neumann-Jordan and James constants for absolute norms on \(\mathbb R^2\), Mediterr. J. Math. 11 (2014), 633-642. · Zbl 1308.46023
[8] M. Kato and L. Maligranda, On James and von Neumann-Jordan constants of Lorentz sequence spaces, J. Math. Anal. Appl. 258 (2001), 457-465. · Zbl 1028.46014
[9] M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan-von Neumann constants and normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275-295. · Zbl 0997.46009
[10] E. Llorens-Fuster, E. Mazcunan-Navarro and S. Reich, The Ptolemy and Zbaganu constants of normed spaces, Nonlinear Anal. 72 (2010), 3984-3993. · Zbl 1196.46015
[11] L. Nikolova and L. Persson, Some properties of \(X^p\) spaces, Function Spaces (J. Musielak, H. Hudzik, R. Urbanski, eds.), Teubner-Texte zur Matematik 120 (1991), 174-185. · Zbl 0769.46021
[12] L. Persson, Some elementary inequalities in connection with \(X^p\) spaces, Constructive Theory of Functions (B. Sendov, ed.), Publishing House of the Bulgarian Academy of Sciences, 1988, pp. 367-376. · Zbl 0732.46019
[13] S. Saejung, Another look at Cesaro sequence spaces, J. Math. Anal. Appl. 366 (2010), 530-537. · Zbl 1203.46008
[14] C. Yang, Jordan-von Neumann constant for Banaś-Frączek space, Banach J. Math. Anal. 8 (2014), no. 2, 185-192. · Zbl 1304.46019
[15] C. Yang, A note on Jordan-Von Neumann constant for \(Z_{p,q}\) space, J. Math. Inequal. 2 (2015), 499-504. · Zbl 1333.46013
[16] C. Yang and H. Li, An inequality between Jordan-von Neumann constant and James constant, Appl. Math. Lett. 23 (2010), 277-281. · Zbl 1194.46029
[17] C. Yang and X. Yang, On the James type constant and von Neumann-Jordan constant for a class of Banaś-Frączek type spaces, J. Math. Inequal. 10 (2016), 551-558. · Zbl 1348.46017
[18] Z. Zuo, The normal structure and parametrized von Neumann-Jordan type constant, Acta Math. Sinica 63 (2020), 655-660. · Zbl 1474.46042
[19] Z. Zuo and C. Tang, On James and Jordan-von Neumann type constants and the normal structure in Banach spaces, Topol. Methods Nonlinear Anal. 49 (2017), 615-623. · Zbl 1380.46009
[20] Z. Zuo and C. Tang, On Jordan-von Neumann type constants and normal structure in Banach spaces, Acta Math. Sinica 60 (2017), 383-388. · Zbl 1389.46024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.