×

Infinite interval problems for Hilfer fractional evolution equations with almost sectorial operators. (English) Zbl 1519.34071

In this article, there is considered the following Cauchy problem of fractional evolution equations on an infinite interval \[ \begin{cases} & ^H D^{\nu, \mu}_{0+} x(t)= A x(t) + f(t,x(t)), \ \ t \in (0,\infty), \\ & I^{(1-\nu)(1-\mu)}_{0+} x(0)=x_0, \end{cases} \tag{1} \] where \( ^H D^{\nu, \mu}_{0+}\) is the Hilfer fractional derivative of order \(0 < \mu < 1\) and type \(0 \leq \nu \leq 1\) ; \( I^{(1-\nu)(1-\mu)}_{0+} \) is the Riemann-Liouville integral of order \((1-\nu)(1-\mu)\); \(A\) is an almost sectorial operator in a Banach space \(X\) and \(f : [0,\infty) \times X \to X\).
The authors prove theorems for existence of at least one mild solution for the considered Cauchy problem (1) in the cases when the semigroup associated with the almost sectorial operator is compact as well as noncompact. The methods used are based on a generalized Ascoli-Arzela theorem, Schauder’s fixed point theorem and Kuratowski’s measure of noncompactness. It may be noted, that the authors do not assume that \( f (t, \cdot)\) satisfies a Lipschitz condition. Sufficient conditions for the attractiveness of the solutions in each of the considered cases are provided too.
Two examples are provided to illustrate the obtained results.

MSC:

34G20 Nonlinear differential equations in abstract spaces
34A08 Fractional ordinary differential equations
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
26A33 Fractional derivatives and integrals
47N20 Applications of operator theory to differential and integral equations

References:

[1] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics 2004, Springer, 2010. · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[2] K. M. Furati, M. D. Kassim, and N. e.-. Tatar, “Existence and uniqueness for a problem involving Hilfer fractional derivative”, Comput. Math. Appl. 64:6 (2012), 1616-1626. · Zbl 1268.34013 · doi:10.1016/j.camwa.2012.01.009
[3] H. Gu and J. J. Trujillo, “Existence of mild solution for evolution equation with Hilfer fractional derivative”, Appl. Math. Comput. 257 (2015), 344-354. · Zbl 1338.34014 · doi:10.1016/j.amc.2014.10.083
[4] W. Guo, “A generalization and application of Ascoli-Arzela theorem”, J. Systems Sci. Math. Sci. 22:1 (2002), 115-122. · Zbl 1034.34071
[5] M. Haase, “The functional calculus for sectorial operators”, pp. 19-60 in The functional calculus for sectorial operators, Oper. Theory Adv. Appl. 169, Birkhäuser, Basel, 2006. · doi:10.1007/3-7643-7698-8_2
[6] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer, 1981. · Zbl 0456.35001
[7] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. · Zbl 0998.26002 · doi:10.1142/9789812817747
[8] A. Jaiwal and D. Bahuguna, “Hilfer fractional differential equations with almost sectorial operators”, Diff. Eq. Dyn. Syst. (2020). · Zbl 1519.34068 · doi:10.1007/s12591-020-00514-y
[9] K. Kavitha, V. Vijayakumar, R. Udhayakumar, and K. S. Nisar, “Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness”, Math. Methods Appl. Sci. 44:2 (2021), 1438-1455. · Zbl 1512.34148 · doi:10.1002/mma.6843
[10] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies 204, Elsevier, 2006. · Zbl 1092.45003
[11] B. M. Liu and L. S. Liu, “The decision theorems of relative compactness for two abstract function groups in an infinite interval and their applications”, J. Systems Sci. Math. Sci. 30:7 (2010), 1008-1019. · Zbl 1240.46052
[12] Z. B. Liu, L. S. Liu, and J. Zhao, “The criterion for relative compactness for a class of abstract function groups on an infinite interval and its applications”, J. Systems Sci. Math. Sci. 28:3 (2008), 370-378. · Zbl 1174.46319
[13] F. Mainardi, P. Paraddisi, and R. Gorenflo, “Probability distributions generated by fractional diffusion equations”, pp. 312-351 in Econophysics: an emerging science, edited by J. Kertesz and I. Kondor, Kluwer, Dordrecht, 2000.
[14] F. Periago and B. Straub, “A functional calculus for almost sectorial operators and applications to abstract evolution equations”, J. Evol. Equ. 2:1 (2002), 41-68. · Zbl 1005.47015 · doi:10.1007/s00028-002-8079-9
[15] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering 198, Academic Press, San Diego, CA, 1999. · Zbl 0924.34008
[16] J. V. C. Sousa, F. Jarad, and T. Abdeljawad, “Existence of mild solutions to Hilfer fractional evolution equations in Banach space”, Ann. Funct. Anal. 12:1 (2021), art. id. 12. · Zbl 1458.34032 · doi:10.1007/s43034-020-00095-5
[17] M. Yang and Q. Wang, “Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions”, Fract. Calc. Appl. Anal. 20:3 (2017), 679-705. · Zbl 1368.34017 · doi:10.1515/fca-2017-0036
[18] Y. Zhou, Basic theory of fractional differential equations, World Scientific, Hackensack, NJ, 2014. · Zbl 1336.34001 · doi:10.1142/9069
[19] Y. Zhou, Fractional evolution equations and inclusions: analysis and control, Academic Press, London, 2016. · Zbl 1343.34001
[20] Y. Zhou and J. W. He, “Well-posedness and regularity for fractional damped wave equations”, Monatsh. Math. 194:2 (2021), 425-458. · Zbl 1458.35464 · doi:10.1007/s00605-020-01476-7
[21] Y. Zhou and J. W. He, “Infinite interval problems for fractional evolution equations with Hilfer fractional derivative”, To appear in Math. Meth. Appl. Sci.
[22] Y. Zhou and J. N. Wang, “The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative”, Math. Methods Appl. Sci. 44:3 (2021), 2431-2438. · Zbl 1475.35297 · doi:10.1002/mma.5926
[23] Y. Zhou, J. W. He, B. Ahmad, and N. Huy Tuan, “Existence and regularity results of a backward problem for fractional diffusion equations”, Math. Methods Appl. Sci. 42:18 (2019), 6775-6790 · Zbl 1435.35413 · doi:10.1002/mma.5781
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.