Duchamps, Jean-Jil; Foutel-Rodier, Félix; Schertzer, Emmanuel General epidemiological models: law of large numbers and contact tracing. (English) Zbl 1520.92061 Electron. J. Probab. 28, Paper No. 98, 37 p. (2023). Summary: We study a class of individual-based, fixed-population size epidemic models under general assumptions, e.g., heterogeneous contact rates encapsulating changes in behavior and/or enforcement of control measures. We show that the large-population dynamics are deterministic and relate to the Kermack-McKendrick PDE. Our assumptions are minimalistic in the sense that the only important requirement is that the basic reproduction number of the epidemic \(R_0\) be finite, and allow us to tackle both Markovian and non-Markovian dynamics. The novelty of our approach is to study the “infection graph” of the population. We show local convergence of this random graph to a Poisson (Galton-Watson) marked tree, recovering Markovian backward-in-time dynamics in the limit as we trace back the transmission chain leading to a focal infection. This effectively models the process of contact tracing in a large population. It is expressed in terms of the Doob \(h\)-transform of a certain renewal process encoding the time of infection along the chain. Our results provide a mathematical formulation relating a fundamental epidemiological quantity, the generation time distribution, to the successive time of infections along this transmission chain. MSC: 92D30 Epidemiology 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60J85 Applications of branching processes 05C80 Random graphs (graph-theoretic aspects) Keywords:contact-tracing; Crump-Mode-Jagers process with interaction; functional law of large numbers; infection graph; Kermack-McKendrick model; local weak convergence; non-Markovian epidemic model Software:EpiEstim PDFBibTeX XMLCite \textit{J.-J. Duchamps} et al., Electron. J. Probab. 28, Paper No. 98, 37 p. (2023; Zbl 1520.92061) Full Text: DOI arXiv Link References: [1] David Aldous and J. Michael Steele, The objective method: Probabilistic combinatorial optimization and local weak convergence, Probability on Discrete Structures (A.-S. Sznitman, S. R. S. Varadhan, and Harry Kesten, eds.), vol. 110, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 1-72. · Zbl 1037.60008 [2] Julien Arino, Fred Brauer, Pauline van den Driessche, James Watmough, and Jianhong Wu, A final size relation for epidemic models, Mathematical biosciences and engineering 4 (2007), no. 2, 159. · Zbl 1123.92030 [3] François Baccelli, Bartłomiej Błaszczyszyn, and Mohamed Karray, Random measures, point processes, and stochastic geometry, 2020. [4] Jeremy Baker, Pavel Chigansky, Kais Hamza, and Fima C. Klebaner, Persistence of small noise and random initial conditions, Advances in Applied Probability 50 (2018), 67-81. · Zbl 1431.60085 [5] Andrew Barbour and Gesine Reinert, Approximating the epidemic curve, Electronic Journal of Probability 18 (2013), 30 pp. · Zbl 1301.92072 [6] Andrew D. Barbour, Pavel Chigansky, and Fima C. Klebaner, On the emergence of random initial conditions in fluid limits, Journal of Applied Probability 53 (2016), no. 4, 1193-1205. · Zbl 1356.60053 [7] Itai Benjamini and Oded Schramm, Recurrence of distributional limits of finite planar graphs, Electronic Journal of Probability 6 (2001), no. none. · Zbl 1010.82021 [8] Fred Brauer, The Kermack-McKendrick epidemic model revisited, Mathematical Biosciences 198 (2005), no. 2, 119-131. · Zbl 1090.92042 [9] Fred Brauer and Carlos Castillo-Chavez, Mathematical models in population biology and epidemiology, Texts in Applied Mathematics, Springer, New Yord, 2012. · Zbl 1302.92001 [10] Tom Britton and Etienne Pardoux, Stochastic epidemic models with inference, Mathematical Biosciences Subseries, Springer International Publishing, 2019. · Zbl 1431.92007 [11] Tom Britton and Gianpaolo Scalia Tomba, Estimation in emerging epidemics: Biases and remedies, Journal of the Royal Society Interface 16 (2019), no. 150, 20180670. [12] Anne Cori, Neil M. Ferguson, Christophe Fraser, and Simon Cauchemez, A new framework and software to estimate time-varying reproduction numbers during epidemics, American Journal of Epidemiology 178 (2013), no. 9, 1505-1512. [13] Odo Diekmann, Limiting behaviour in an epidemic model, Nonlinear Analysis: Theory, Methods & Applications 1 (1977), no. 5, 459-470. · Zbl 0371.92024 [14] Jie Yen Fan, Kais Hamza, Peter Jagers, and Fima C. Klebaner, Convergence of the age structure of general schemes of population processes, Bernoulli 26 (2020), 893-926. · Zbl 1466.60175 [15] Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dörner, Michael Parker, David Bonsall, and Christophe Fraser, Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science 368 (2020), no. 6491. [16] Raphaël Forien, Guodong Pang, and Étienne Pardoux, Epidemic models with varying infectivity, SIAM Journal on Applied Mathematics 81 (2021), no. 5, 1893-1930. · Zbl 1471.92307 [17] Raphaël Forien, Guodong Pang, and Étienne Pardoux, Estimating the state of the COVID-19 epidemic in France using a model with memory, Royal Society open science 8 (2021), no. 3, 202327. · Zbl 1471.92307 [18] Félix Foutel-Rodier, François Blanquart, Philibert Courau, Peter Czuppon, Jean-Jil Duchamps, Jasmine Gamblin, Élise Kerdoncuff, Rob Kulathinal, Léo Régnier, Laura Vuduc, Amaury Lambert, and Emmanuel Schertzer, From individual-based epidemic models to McKendrick-von Foerster PDEs: A guide to modeling and inferring COVID-19 dynamics, Journal of Mathematical Biology 85 (2022), no. 4, 43. · Zbl 1501.35410 [19] Christophe Fraser, Estimating individual and household reproduction numbers in an emerging epidemic, PLOS ONE 2 (2007), no. 8, 1-12. [20] Tapiwa Ganyani, Cécile Kremer, Dongxuan Chen, Andrea Torneri, Christel Faes, Jacco Wallinga, and Niel Hens, Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, march 2020, Eurosurveillance 25 (2020). [21] Alessandro Garavaglia, Remco van der Hofstad, and Nelly Litvak, Local weak convergence for PageRank, The Annals of Applied Probability 30 (2020), no. 1, 40 - 79. · Zbl 1434.60027 [22] Kais Hamza, Peter Jagers, and Fima C. Klebaner, The age structure of population-dependent general branching processes in environments with a high carrying capacity, Proceedings of the Steklov Institute of Mathematics 282 (2013), 90-105. · Zbl 1306.60127 [23] Hisashi Inaba, Age-structured population dynamics in demography and epidemiology, Springer, Singapore, 2017. · Zbl 1370.92010 [24] Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, second ed., Grundlehren Der Mathematischen Wissenschaften, Springer-Verlag, Berlin Heidelberg, 2003. · Zbl 1018.60002 [25] Peter Jagers, Branching process with biological applications, Wiley, London, 1975. · Zbl 0356.60039 [26] Peter Jagers and Fima C. Klebaner, Population-size-dependent and age-dependent branching processes, Stochastic Processes and their Applications 87 (2000), 235-254. · Zbl 1045.60090 [27] Peter Jagers and Fima C. Klebaner, Population-size-dependent, age-structured branching processes linger around their carrying capacity, Journal of Applied Probability 48A (2011), 249-260. · Zbl 1229.60098 [28] Peter Jagers and Olle Nerman, The growth and composition of branching populations, Advances in Applied Probability 16 (1984), 221-259. · Zbl 0535.60075 [29] Olav Kallenberg, Random measures, theory and applications, Probability Theory and Stochastic Modelling, vol. 77, Springer International Publishing, Cham, 2017. · Zbl 1376.60003 [30] William O. Kermack and Anderson G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115 (1927), no. 772, 700-721. · JFM 53.0517.01 [31] Junling Ma and David JD Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bulletin of mathematical biology 68 (2006), 679-702. · Zbl 1334.92419 [32] Olle Nerman and Peter Jagers, The stable doubly infinite pedigree process of supercritical branching populations, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 65 (1984), no. 3, 445-460. · Zbl 0506.60084 [33] Guodong Pang and Étienne Pardoux, Functional central limit theorems for epidemic models with varying infectivity, Stochastics (2022), 1-48. [34] Guodong Pang and Étienne Pardoux, Functional limit theorems for non-Markovian epidemic models, The Annals of Applied Probability 32 (2022), no. 3, 1615-1665. · Zbl 1498.92241 [35] Guodong Pang and Étienne Pardoux, Functional law of large numbers and pdes for epidemic models with infection-age dependent infectivity, Applied Mathematics & Optimization 87 (2023), no. 3, 50. · Zbl 1511.92084 [36] Guodong Pang and Étienne Pardoux, Multi-patch epidemic models with general exposed and infectious periods, ESAIM: PS 27 (2023), 345-401. · Zbl 1518.92157 [37] Joannes Reddingius, Notes on the mathematical theory of epidemics, Acta Biotheoretica 20 (1971), no. 3, 125-157. [38] Zhan Shi, Branching random walks, École d’Été de Probabilités de Saint-Flour, vol. 2151, Springer, Cham, 2015. · Zbl 1348.60004 [39] Ziad Taib, Branching processes and neutral evolution, Lecture Notes in Biomathematics, Springer-Verlag Berlin Heidelberg, 1992. · Zbl 0748.60081 [40] Horst R. Thieme, Renewal theorems for linear periodic volterra integral equations, Journal of Integral Equations 7 (1984), no. 3, 253-277. · Zbl 0566.45016 [41] Horst R. Thieme, Renewal theorems for some mathematical models in epidemiology, Journal of Integral Equations 8 (1985), no. 3, 185-216. · Zbl 0565.92020 [42] Viet Chi Tran, Modèles particulaires stochastiques pour des problèmes d’évolution adaptative et pour l’approximation de solutions statistiques, Theses, Université de Nanterre - Paris X, 2006. [43] Viet Chi Tran, Large population limit and time behaviour of a stochastic particle model describing an age-structured population, ESAIM: PS 12 (2008), 345-386. · Zbl 1187.92071 [44] Jean Vaillancourt, Interacting Fleming-Viot processes, Stochastic processes and their applications 36 (1990), no. 1, 45-57. · Zbl 0729.92017 [45] Remco van der Hofstad, Stochastic processes on random graphs, Lecture notes for the 47th Summer School in Probability Saint-Flour 2017 (2017). [46] Jacco Wallinga and Marc Lipsitch, How generation intervals shape the relationship between growth rates and reproductive numbers, Proceedings of the Royal Society B: Biological Sciences 274 (2007), no. 1609, 599-604 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.