×

zbMATH — the first resource for mathematics

Mathematische Werke. Herausgegeben unter Mitwirkung einer von der Königlich Preussischen Akademie der Wissenschaften eingesetzten Commission. Erster Band. Abhandlungen I. (German) JFM 25.0049.01
Berlin. Mayer & Müller. VIII u. 356 S. \(4^\circ\) (1894).
Was die Schüler des aufs höchste verehrten Lehrers seit langen Jahren dringend erbeten hatten, was die ganze mathematische Welt von dem angesehensten Forscher ihrer Zeit ersehnte, was aber von allen, als immer verschoben, bezweifelt wurde, nun ist es doch verwirklicht worden: der achtzigjährige Veteran der Mathematiker, zu dem alle mit Ehrfurcht und Liebe aufschauen, giebt seine Werke heraus, findet sein Vergnügen daran, manche Früchte seiner Lebensarbeit, die er lange über die neun Horazischen Jahre hat lagern lassen, der Jetztwelt zum Genusse zu überlassen. Die Akademie, deren Zierde er seit 1857 gewesen ist, hat eine Commission ernannt, welche die Herausgabe überwachen soll, und während Ref. über den ersten Band berichtet, der 1894 erschienen ist, wird der zweite inzwischen schon ausgegeben. Wie die Schüler des Meisters schon seit Jahren sich bemühten, durch tägliche Unterhaltung regen Verkehrs ihn über die körperlichen Leiden hinweg zu führen, so stehen sie ihm natürlich auch treu bei der Erledigung dieses Abschlusswerkes seines Lebens zur Seite. Das schnelle Erscheinen des ersten vorliegenden Bandes verdankt man nach dem Vorworte hauptsächlich dem ,,thätigen und umsichtigen Vorgehen” des Herrn Knoblauch.
Die 17 Abhandlungen, welche hier zusammengestellt erscheinen, sind chronologisch geordnet, und zwar: 1. ,,Ueber die Entwickelung der Modularfunctionen” (S. 1-49). Diese Prüfungsarbeit aus dem Jahre 1840 ist unter den Augen Gudermann’s entstanden und von ihm sehr günstig beurteilt worden; ein Teil des Inhaltes ist der grossen Arbeit ,,Theorie der Abel’schen Functionen” (J. für Math. LII. 1856) einverleibt worden. Der Aufforderung zur Veröffentlichung der ganzen Arbeit, ,,was namentlich den für die Geschichte der elliptischen Transcendenten sich interessirenden Mathematikern erwünscht sein werde”, kommt der Verf. erst jetzt nach.
2. ,,Darstellung einer analytischen Function einer complexen Veränderlichen, deren absoluter Betrag zwischen zwei gegebenen Grenzen liegt” (S. 51-66; Münster 1841).
3. ,,Zur Theorie der Potenzreihen” (S. 67-74; Münster, Herbst 1841).
4. ,,Definition analytischer Functionen einer Veränderlichen vermittelst algebraischer Differentialgleichungen” (S. 75-84; Münster, Frühjahr 1842). Auszug aus einer bisher nicht veröffentlichten Abhandlung, deren Inhalt der Verf. bei seinen functionentheoretischen Vorlesungen benutzt hat.
5. ,,Bemerkungen über die analytischen Facultäten” (S. 87-103; Deutsch-Crone, August 1843). Programm - Abhandlung des Progymnasiums in Deutsch-Crone.
6. ,,Reduction eines bestimmten dreifachen Integrals” (8.105-109; Deutsch- Crone 1844).
7. ,,Beitrag zur Theorie der Abel’schen Integrale” (S. 111-131; Braunsberg, 17. Juli 1849). Programm - Abhandlung des Gymnasiums zu Braunsberg.
8. ,,Zur Theorie der Abel’schen Functionen” (S. 133-152; Westernkotten, 11. Septbr. 1853). Erschienen im J. für Math. XLVII. 289-306 (1854).
9. ,,Ueber die Theorie der analytischen Facultäten” (S. 153-221). J. für Math. LI. 1-60 (1856); Abhandlungen aus der Functionenlehre 183-260 (1886).
10. Akademische Antrittsrede (S. 223-226; 9. Juli 1857). Berl. Monatsber. 1857, 148-154.
11. ,,Ueber die Integration algebraischer Differentiale vermittelst Logarithmen” (S. 227-232; 26. Febr. 1857). Berl. Monatsber. 1857, 148- 154.
12. ,,Ueber ein die homogenen Functionen zweiten Grades betreffendes Theorem, nebst Anwendung desselben auf die Theorie der kleinen Schwingungen” (S. 233-246; 4. März 1858). Berl. Monatsber. 1858, 207- 220.
13. ,,Neuer Beweis des Fundamentalsatzes der Algebra” (S. 247-256; 12. Decbr. 1859). Bisher ungedruckt.
14. ,,Ueber die geodätischen Linien auf dem dreiaxigen Ellipsoid” (S. 257-266; 31. Oct. 1861). Berl. Monatsber. 1861, 986-997.
15. ,,Bemerkungen über die Integration der hyperelliptischen Differentialgleichungen” (S. 267-273; 17. Febr. 1862). Berl. Monatsber. 1862, 127-133.
16. ,,Zur Integration der linearen partiellen Differentialgleichungen mit constanten Coefficienten” (S. 275-295; 1861-63). Acta Math. VI. 254-279 (1884).
17. ,,Theorie der Abel’schen Functionen” (S. 297-355; 1856). J. für Math. LII. 285-339. Abdruck nur eines Teiles der an letzterer Stelle veröffentlichten Abhandlung. Die Theorie der hyperelliptischen Functionen soll in neuer Bearbeitung in einem folgenden Bande erscheinen; die Digression über die elliptischen Functionen ist in der ersten Abhandlung des Bandes enthalten.
Bisher nicht veröffentlicht sind also die Abhandlungen 1, 2, 3, 4, 6, 13. Bei Arbeiten von Weierstrass etwas anderes herzusetzen als die blossen Titel, erschien dem Referenten wie eine Vermessenheit. Sie gehören der Geschichte an, und die Ueberschriften der einzelnen Aufsätze nebst den Daten ihrer Entstehung genügen zur Orientirung.

Full Text: Link