Moore, E. H. Concerning triple systems. (English) JFM 25.0198.02 Math. Ann. 43, 271-285 (1893). Der Verf. zeigt, wie man mindestens zwei verschiedene Arten (,,sorts”) von Tripelsystemklassen von \(t\) Elementen für jedes \(t\) von der Form \(6m+1\) oder \(6m+3\) und grösser als \(t=13\) aufstellen kann. Vergl. E. Netto, Substitutionentheorie und ihre Anwendungen auf die Algebra. Leipzig: Teubner (1882; JFM 14.0090.01), S. 220–235] und das vorangehende Referat [Verf. New York Math. Soc. Bull. 3, 73–78 (1893; JFM 25.0198.01)]. Reviewer: Wallenberg, Dr. (Berlin) Cited in 5 ReviewsCited in 21 Documents MSC: 05B07 Triple systems JFM Section:Zweiter Abschnitt. Capitel 3. Elimination und Substitution, Determinanten, symmetrische Functionen. Citations:Zbl 02704969; JFM 14.0090.01; Zbl 02680781; JFM 25.0198.01 PDFBibTeX XMLCite \textit{E. H. Moore}, Math. Ann. 43, 271--285 (1893; JFM 25.0198.02) Full Text: DOI EuDML References: [1] Netto, Annalen, vol. 42, p. 152. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.