×

zbMATH — the first resource for mathematics

Sull’integrazione dell’equazione \(\frac{\partial^2\varphi}{\partial t^2}-\sum\limits_1^m{}_i\frac{\partial^2\varphi}{\partial x_i^2} = 0\). (Italian) JFM 29.0315.01
Das von Volterra (Rom. Acc. L. Rend. (5) \(1_2\), 265-277; F. d. M. 24, 984-988, 1892, JFM 24.0984.02) angewandte Verfahren für den Fall \(m=2\) ist vom Verf. auf den Fall \(m=3\) ausgedehnt worden (Rom. Acc. L. Rend. (5) \(5_1\), 357-360; F. d. M. 27, 702, 1896, JFM 27.0702.02). In dieser Arbeit wird dasselbe Verfahren auf den Fall beliebiger Werte von \(m\) ausgedehnt.

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Vedi:Sul principio di Huyghens. Rend. dell’Ist. Lomb., 1889, eSull’espressione analitica del principio di Huyghens. Rend. dell’Acc. dei Lincei, vol. I, 1.o semestre, serie V.
[2] Sulle vibrazioni luminose nei mezzi isotropi. Rend. dell’Acc. dei Lincei, vol. I, 2.o semestre, serie V.
[3] Sulle onde cilindriche nei mezzi isotropi. Rend. dell’Ace. dei Lincei, vol. I, 2.o semestre, serie V.
[4] Sulla dimostrazione della formola che rappresenta analiticamente il principio di Huyghens. Rend. dell’Acc. dei Lincei, vol. V, 1.o semestre, serie V.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.