×

zbMATH — the first resource for mathematics

Products in K-theory and intersecting algebraic cycles. (English) Zbl 0394.14004

MSC:
14C15 (Equivariant) Chow groups and rings; motives
14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
11R70 \(K\)-theory of global fields
14C05 Parametrization (Chow and Hilbert schemes)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] B Bourbaki, N.: Elements of Mathematics, Commutative Algebra. Paris: Herman 1972 · Zbl 0279.13001
[2] BFM Baum, P., Fulton, W., MacPherson, R.: Riemann-Roch for Singular Varieties. IHES Publications Mathématiques, #45, Bures-sur Yvette 1975 · Zbl 0332.14003
[3] F Fulton, W.: Rational Equivalence on Singular Varieties. IHES, Publ. Math. #45, Bures-sur Yvette 1975 · Zbl 0332.14002
[4] FM Fulton, W., MacPherson, R.: Intersecting Cycles on an Algebraic Variety. Preprint · Zbl 0385.14002
[5] G Godement, R.: Topologie Algébrique et Théorie des Faisceaux. Paris: Hermann 1958
[6] Gr Grayson, D.: Projections, Cycles, and AlgebraicK-theory. To appearin Math. Ann.
[7] Q Quillen, D.: Higher AlgebraicK-theory: I. In: AlgebraicK-theory I. Lecture Notes in Mathematics, #341. Berlin, Heidelberg, New York: Springer 1973
[8] S Serre, J-P.: Algèbre Locale, Multiplicités. Lecture Notes in Mathematics, #11. Berlin, Heidelberg, New York: Springer 1965
[9] V Verdier, J-L.: Le Théorème de Riemann-Roch pour les Variétés Algébriques Éventuellement Singulières [d’après P. Baum, W. Fulton, et R. MacPherson], Séminaire Bourbaki, #464. Secrétariat Mathématique, Paris 1976
[10] W Waldhausen, F.: AlgebraicK-theory of Generalized Free Products. To appear in the Annals of Math. · Zbl 0407.18009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.