×

zbMATH — the first resource for mathematics

Induced cuspidal representations and generalised Hecke rings. (English) Zbl 0435.20023

MSC:
20G05 Representation theory for linear algebraic groups
20G40 Linear algebraic groups over finite fields
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Benson, C.T., Curtis, C.W.: On the degrees and rationality of certain characters of finite Chevalley groups. Trans. Amer. Math. Soc.165, 251-274 (1972) · Zbl 0246.20008
[2] Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S.27, 55-152 (1965) · Zbl 0145.17402
[3] Bourbaki, N.: Groupes et algèbres de Lie, Chap. IV, V, VI. Paris: Hermann 1968
[4] Curtis, C.W., Fossum, T.V.: On centralizer rings and characters of representations of finite groups. Math. Zeit.107, 402-406 (1968) · Zbl 0185.06801
[5] Curtis, C.W., Iwahori, N., Kilmoyer, R.: Hecke algebras and characters of parabolic type of finite groups with (B, N) pairs. Publ. Math. I.H.E.S.40, 81-116 (1972) · Zbl 0254.20004
[6] Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras. Interscience 1962 · Zbl 0131.25601
[7] Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. of Math.103, 103-161 (1976) · Zbl 0336.20029
[8] Green, J.A.: The characters of the finite general linear groups. Trans. Amer. Math. Soc.80, 402-447 (1955) · Zbl 0068.25605
[9] Harish-Chandra: Eisenstein series over finite fields, in functional analysis and related fields, Stone anniversary volume (F.E. Browder, ed.), pp. 76-88. Berlin Heidelberg New York: Springer-Verlag 1970 · Zbl 0226.20049
[10] Hoefsmit, P.: Representations of Hecke algebras of finite groups with (B, N) pairs of classical type. Ph.D. Dissertation, University of British Columbia, Vancouver, B.C., 1974
[11] Howlett, R.: Normalizers of parabolic subgroups of reflection groups. Proc. Lond. Math. Soc. in press (1980) · Zbl 0427.20040
[12] Howlett, R., Kilmoyer, R.W.: Principal series representations of finite groups withBN-pairs. In press (1980) · Zbl 0438.20029
[13] Kilmoyer, R.W.: Principal series representations of finite Chevalley groups. J. of Alg.51, 300-319 (1978) · Zbl 0389.20008
[14] Knapp, A.W.: Determination of intertwining operators. In: Proc. Symp. Pure Math. A.M.S. XXVI, 263-268 (1973) · Zbl 0288.22015
[15] Knapp, A.W.: Weyl group of a cuspidal parabolic. Ann. Scient. Ec. Norm. Sup. 275-294 (1975) · Zbl 0305.22010
[16] Knapp, A.W., Zuckermann: Normalizing factors, tempered representations andL-groups. In: Proc. Symp. Pure Math. XXXII Part i, (1979) · Zbl 0414.22017
[17] Lehrer, G.I.: The characters of the finite special linear groups. J. of Alg.26, 564-583 (1973) · Zbl 0265.20037
[18] Lehrer, G.I.: Adjoint groups regular unipotent elements and discrete series characters. Trans. Amer. Math. Soc.214, 249-260 (1975) · Zbl 0345.20047
[19] Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius. Inv. Math.38, 101-159 (1976) · Zbl 0366.20031
[20] Lusztig, G.: Irreducible representations of finite classical groups. Inv. Math.43, 125-175 (1977) · Zbl 0372.20033
[21] Richen, F.: Modular representations of split (B, N) pairs. Trans. Amer. Math. Soc.140, 435-460 (1969) · Zbl 0181.03801
[22] Springer, T.A.: Cusp forms for finite groups, in Lecture Notes in Mathematics 131, pp. 97-120. Springer-Verlag (1968)
[23] Springer, T.A.: On the characters of certain finite groups. In: ?Lie groups and their representations?, Budapest Summer School on Group Representations (I.M. Geldfand, ed.), pp. 621-644 (1971)
[24] Springer, T.A.: Caractères de groupes de Chevalley finis, sém. Bourbaki no. 429. In: Springer Lecture Notes in Mathematics 383, 227 (1974)
[25] Steinberg, R.: Lectures on Chevalley groups. Yale Lecture Notes, New Haven, Conn. 1967 · Zbl 0164.34302
[26] Tits, J.: Normalisateurs de tores, I. Groupes de Coxeter étendus. J. of Alg.4, 96-116 (1966) · Zbl 0145.24703
[27] Yokonuma, T.: Sur le commutant d’une représentation d’un group de Chevalley fini II. J. Fac. Sci. Univ. Tokyo, Sect I16, 65-81 (1969) · Zbl 0239.20052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.