zbMATH — the first resource for mathematics

Conditions de Whitney et sections planes. (French) Zbl 0449.32013

32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
58A35 Stratified sets
57N80 Stratifications in topological manifolds
Full Text: DOI EuDML
[1] Briançon, J., Speder, J.P.: Les condition de Whitney impliquent “225-1 constant{”. Ann. Inst. Fourier (Grenoble)26, 153-163 (1976)} · Zbl 0331.32012
[2] Gerstenhaber, M.: On the deformation of rings and algebras II Ann. of Math.,84, 1-19 (1966) · Zbl 0147.28903
[3] Giusti, M., Henry, J.P.G.: Minorations de nombres de Milnor. Tirage Centre de Mathématiques de l’Ecole Polytechnique, 91128 Palaiseau, No M378.0978 (1978)
[4] Hamm, H.A.: Lokale topologische Eigenschaften komplexer Räume. Math. Ann.191, 235-252 (1971) · Zbl 0214.22801
[5] Hironaka, H.: Normal cones in analytic Whitney stratifications Inst. Hautes Études Sci. Publ. Math. no 36, 127-138 (1969) · Zbl 0219.57022
[6] Hironaka, H.: Introduction to theory of infinitely near singular points, Memorias de matemática del instituto Jorge Juan, Madrid, No 28 (1974) · Zbl 0366.32007
[7] Hironaka, H.: Stratification and flatness. Dans: Real and complex singularities, Nordic Summer School, Oslo 1976, pp. 199-265 Alphen aan den Rijn: Sijthoff & Noordhoff 1977
[8] Hirsch, M.W.: Differential Topology. Berlin-Heidelberg-New York: springer 1976 · Zbl 0356.57001
[9] Kas, A., Schlessinger, M.: On the Versal Deformation of a Complex Space with an Isolated Singularity. Math. Ann.196, 23-29 (1972) · Zbl 0242.32014
[10] Kuo, T.C.: The ratio test for analytic Whitney stratifications. Dans: Liverpool Singularities Symposium I, pp. 141-149. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0246.32006
[11] Mather, J.: Stability ofC ?-Mappings III, Finitely Determined Map-Germs, Inst. Hautes Études Sci. Publ. Math. no 35, 127-156 (1968) · Zbl 0159.25001
[12] Mather, J.: Notes on topological stability, Harvard University, 1970 · Zbl 0207.54303
[13] Milnor, J.: Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, vol. 61, Princeton U.P. 1968 · Zbl 0184.48405
[14] Teissier, B.: Cycles évanescents, sections plants et conditions de Whitney. Astérisque no 7-8, 285-362 (1973)
[15] Teissier, B.: Appendice au cours de O. Zariski Le problème des modules pour les branches planes. Centre de Mathématiques de l’Ecole Polytechnique 1973
[16] Teissier, B.: Introduction to equisingularity problems. Proc. Symposia in Pure Math. Amer. Math. Soc.29, 581-632 (1975) · Zbl 0322.14008
[17] Thom, R.: Ensembles et morphismes stratiliés. Bull. Amer. Math. Soc.75, 240-284 (1969) · Zbl 0197.20502
[18] Tjourina, G.: Locally semiuniversal flat deformations of isolated singularities of complex spaces. Izv. Akad. Nauk. SSSR, Ser. Math.33, 967-999 (1970)
[19] Verdier, J.L.: Stratifications de Whitney et théorème de Bertini-Sard. Invent. math.36, 295-312 (1976) · Zbl 0333.32010
[20] Whitney, H.: Tangents to an analytique variety. Ann. of Math.81, 496-543 (1965) · Zbl 0152.27701
[21] Zariski, O.: Collected Papers, vol. IV, Equisingularity on Algebraic Varieties, Cambridge-Massachusetts: The MIT Press, 1979
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.