×

Sur les transformations et extensions de la formule de Stokes. (French) JFM 45.1292.02

Es seien \[ p=\frac {\partial z}{\partial x}, \quad q=\frac {\partial z}{\partial y}, \quad r=\frac {\partial^2z}{\partial x^2}, \quad s=\frac {\partial^2z}{\partial x\partial y}, \quad t=\frac {\partial^2z}{\partial y^2}. \] Verf. findet Integrale von der Form \[ \iint_\varGamma [K(rt -s^2)+Ar+Bs+Ct+D] dx dy. \] \((K, A, B, C, D\) Funktionen von \(x, y, z, p, q,\) die nur von den Werten von \(x, y, z, p, q\) auf der Berandung von \(\varGamma\) abhängen.) In erster Linie wendet Verf. seine Formel auf die Monge-Ampèreschen Differentialgleichungen an. Schließlich werden analoge mehrdimensionale Probleme betrachtet.
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML