×

zbMATH — the first resource for mathematics

Green polynomials and singularities of unipotent classes. (English) Zbl 0473.20029

MSC:
20G05 Representation theory for linear algebraic groups
20G40 Linear algebraic groups over finite fields
20G10 Cohomology theory for linear algebraic groups
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
20C15 Ordinary representations and characters
20C30 Representations of finite symmetric groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Curtis, C.W; Iwahori, N; Kilmoyer, R, Hecke algebras and characters of parabolic type of finite groups with BN pairs, Inst. hautes. études sci. publ. math., 40, 81-116, (1972) · Zbl 0254.20004
[2] Deligne, P, Letter to D. Kazhdan and G. Lusztig, (20 April 1979)
[3] {\scM. Goresky and R. Macpherson}, Intersection homology theory. I. Topology. · Zbl 0448.55004
[4] {\scM. Goresky and R. Macpherson}, Intersection homology theory, II, preliminary version. · Zbl 0529.55007
[5] Green, J.A, The characters of the finite general linear groups, Trans. amer. math. soc., 80, 402-447, (1955) · Zbl 0068.25605
[6] Kazhdan, D, Proof of Springer’s hypothesis, Israel J. math., 28, 272-286, (1977) · Zbl 0391.22006
[7] Kazhdan, D; Lusztig, G, Representations of Coxeter groups and Hecke algebras, Invent. math., 53, 165-184, (1979) · Zbl 0499.20035
[8] Kazhdan, D; Lusztig, G, Schubert vareties and Poincaré duality, ()
[9] Lascoux, A; Schutzenberger, M.P, Sur une conjecture de H. O. foulkes, C. R. acad. sci. Paris ser. A, 285, 323-324, (1978) · Zbl 0374.20010
[10] Lusztig, G, A class of irreducible representations of a Weyl group, Proc. kon. ned. akad. wetensch. ser. A, 82, No. 3, 323-335, (1979) · Zbl 0435.20021
[11] Lusztig, G, Some problems in the representation theory of a finite Chevalley group, () · Zbl 0426.20034
[12] Macdonald, I.G, Symmetric functions and Hall polynomials, (1979), Oxford Univ. Press (Clarendon) Oxford · Zbl 0487.20007
[13] Slodowy, P, Four lectures on simple groups and singularities, (1980), Communications of the Mathematical Institute Utrecht · Zbl 0425.22020
[14] {\scN. Spaltenstéin}, forthcoming book on unipotent classes.
[15] Springer, T.A, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. math., 36, 173-207, (1976) · Zbl 0374.20054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.