×

zbMATH — the first resource for mathematics

Tubular neighborhoods in Euclidean spaces. (English) Zbl 0592.52002
This paper represents parts of the author’s dissertation and comprises five paragraphs: Semiconcave functions and their basic properties; Semiconcave functions and sets of positive reach; Implicit function theorem; Critical values of the distance function; Additional remarks.
For \(\alpha >0\), let \({\mathfrak H}^{\alpha}\) denote Hausdorff \(\alpha\)- dimensional measure on \({\mathbb{R}}^ n\). Let \(S\subset {\mathbb{R}}^ n\) be compact. Let \(S_ r:=\{x\in {\mathbb{R}}^ n: dis\tan ce\quad (x,S)\leq r\}\) be the tubular neighborhood of S.
The main result is the following Theorem: There is a compact set \(C=C(S)\subset [0,(n/2n+2)^{1/2} diam(S)]\) with \({\mathfrak H}^{(n- 1)/2}(C)=0\), such that if \(r\not\in C\) then the boundary of \(S_ r\) is a Lipschitz manifold and \(\overline{({\mathbb{R}}^ n\setminus S_ r)}\) is a set of positive reach. If \(n=2\) then for every \(\epsilon >0\) the entropy dimension of \(C\setminus [0,\epsilon)\) is \(\leq\).
Reviewer: C.Udrişte

MSC:
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
26B25 Convexity of real functions of several variables, generalizations
28A75 Length, area, volume, other geometric measure theory
49Q15 Geometric measure and integration theory, integral and normal currents in optimization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. Bangert, Sets with positive reach , Arch. Math. (Basel) 38 (1982), no. 1, 54-57. · Zbl 0453.53014
[2] V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten , J. Reine Angew. Math. 307/308 (1979), 309-324. · Zbl 0396.52007
[3] T. Bonneson and W. Fenchel, Konvexer Korper , Chelsea, New York, reprint, 1971.
[4] M. Brown, Sets of constant distance from a planar set , Michigan Math. J. 19 (1972), 321-323. · Zbl 0244.54019
[5] Frank H. Clarke, Optimization and nonsmooth analysis , Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983. · Zbl 0582.49001
[6] F. H. Clarke, Generalized gradients and applications , Trans. Amer. Math. Soc. 205 (1975), 247-262. · Zbl 0307.26012
[7] P. Cohen, Decision procedures for real and \(p\)-adic fields , Comm. Pure Appl. Math. 22 (1969), 131-151. · Zbl 0167.01502
[8] R. M. Dudley, On second derivatives of convex functions , Math. Scand. 41 (1977), no. 1, 159-174. · Zbl 0386.46037
[9] R. M. Dudley, Acknowledgment of priority: “On second derivatives of convex functions” , Math. Scand. 46 (1980), no. 1, 61. · Zbl 0436.46033
[10] H. Federer, Geometric measure theory , Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[11] H. Federer, Curvature measures , Trans. Amer. Math. Soc. 93 (1959), 418-491. JSTOR: · Zbl 0089.38402
[12] S. Ferry, When \(\epsilon\)-boundaries are manifolds , Fund. Math. 90 (1975/76), no. 3, 199-210. · Zbl 0324.57003
[13] J. H. G. Fu, Tubular neighborhoods of planner sets , Thesis, MIT, 1984.
[14] R. Gariepy and W. D. Pepe, On the level sets of a distance function in a Minkowski space , Proc. Amer. Math. Soc. 31 (1972), 255-259. JSTOR: · Zbl 0228.57005
[15] H. Lebesgue, En marge du calcul des variations. Une introduction au calcul des variations et aux inégalités géométriques , Monographies de “L’Enseignement Mathématique”, No. 12, Inst. de Maths., Université, Geneva, 1963. · Zbl 0136.09701
[16] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations , Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass., 1982. · Zbl 0497.35001
[17] P.-L. Lions, Letter dated February 19, 1983 .
[18] B. Mandelbrot, Fractals , W. H. Freeman Co., San Francisco, 1977. · Zbl 0359.76050
[19] A. P. Morse, The behavior of a function on its critical set , Ann. of Math. 40 (1939), 62-70. · Zbl 0020.01205
[20] Yu. G. Reshetnyak, Generalized derivatives and differentiability almost everywhere , Math. USSR Sbornik 4 (1968), 293-302. · Zbl 0176.12001
[21] R. T. Rockafellar, Convex analysis , Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. · Zbl 0193.18401
[22] L. A. Santalo, Integral geometry and geometric probability , Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. · Zbl 0342.53049
[23] L. Schwartz, Théorie des distributions , Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. · Zbl 0149.09501
[24] E. M. Stein, Singular integrals and differentiability properties of functions , Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[25] H. Tietze, Eine charakteristische Eigenschaft der abgeschlossenen konvexen Punktmengen , Math. Ann. 99 (1928), 394. · JFM 54.0797.02
[26] H. Weyl, On the volume of tubes. , Am. J. Math. 61 (1939), 461-472. JSTOR: · Zbl 0021.35503
[27] H. Whitney, A function not constant on a connected set of critical points , Duke Math. J. 1 (1935), 514-517. · Zbl 0013.05801
[28] H. Whitney, Elementary structure of real algebraic varieties , Ann. of Math. (2) 66 (1957), 545-556. JSTOR: · Zbl 0078.13403
[29] Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings , Math. Ann. 264 (1983), no. 4, 495-515. · Zbl 0507.57019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.