×

On functions of rectangles and their application to analytic functions. (English) JFM 60.0243.01

Es handelt sich um eine Verallgemeinerung der Bedingung von Besicovitch (1930; F. d. M. \(56_{\text{I}}\), 272) für die Regularität iner in einem Bereich nicht durchweg als differenzierbar vorausgesetzten Funktion einer komplexen Variablen.

PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] A.S. Besicovitch [1], On sufficient conditions for a function to be analytic, and on behaviour of analytic functions in the neighbourhood of non isolated singular points , Proc. of the London Mathem. Soc. , 32 ( 1930 ), pp. 1 - 10 . JFM 56.0272.01 · JFM 56.0272.01
[2] H. Hahn [1], Theorie der reellen Funktionen , Erste Auflage , pp. VIII + 600 , Berlin , 1921 . JFM 48.0261.09 · JFM 48.0261.09
[3] F. Hausdorff [1], Dimension und äußeres Maß , Math. Annalen , 79 ( 1919 ), pp. 157 - 179 . JFM 46.0292.01 · JFM 46.0292.01
[4] C. De La Vallée-Poussin [1], Intégrales de Lebesgue, fonctions d’ensemble, classes de Baire , pp. VIII + 154 , Paris , 1916 . JFM 46.1519.01 · JFM 46.1519.01
[5] L. Tonelli [1], Sul teorema di Green , Atti Accad. naz. Lincei ( 6 ), 11 ( 1925 ), pp. 482 - 488 . JFM 51.0239.02 · JFM 51.0239.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.