zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Prestabilization for $K\sb 1$ of Banach algebras. (English) Zbl 0629.20021
Let A be a ring and B an ideal of A satisfying the n stable range condition. It follows from earlier results of Bass and the first author that the natural map $GL\sb n(B)\to K\sb 1(A,B)$ is onto. The purpose of this paper is to obtain some explicit descriptions of its kernel in various interesting cases including, for example, Banach algebras and others which extend to $K\sb 1(A,B)$ some previous results on $K\sb 1(A)$ due to P. Menal - J. Moncasi and M. Godefroid.
Reviewer: P.Menal

20G35Linear algebraic groups over adèles and other rings and schemes
20H25Other matrix groups over rings
18F25Algebraic $K$-theory and $L$-theory
Full Text: DOI
[1] Bass, H.: K-theory and stable algebra. Publ. math. IHES 22, 5-60 (1964) · Zbl 0248.18025
[2] Bass, H.: Algebraic K-theory. 762 (1968) · Zbl 0174.30302
[3] Bass, H.; Milnor, J.; Serre, J. -.: Solution of the congruence subgroup problem for sln (n $\geqslant 3$) and sp2n (n $\geqslant 2$). Publ. math. IHES 33, 59-137 (1967) · Zbl 0174.05203
[4] Goodearl, K. R.: Von Neumann regular rings. 369 (1979) · Zbl 0411.16007
[5] Herman, R.; Vaserstein, L.: The stable range of c\ast-algebas. Invent. math. 77, No. 3, 553-555 (1984) · Zbl 0559.46025
[6] Van Der Kallen, W.: Injective stability for K2. Lecture notes in math. 551, 71-154 (1976)
[7] Van Der Kallen, W.: Stability for K2 of Dedekind rings of arithmetic type. Lecture notes in math. 854, 217-248 (1981)
[8] Van Der Kallen, W.: A group structure on certain orbit sets of unimodular rows. J. algebra 82, 363-397 (1983) · Zbl 0518.20035
[9] W. van der Kallen, Vasterstein’s prestabilization theorem over commutative rings, to appear. · Zbl 0614.16019
[10] Menal, P.; Moncasi, J.: K1 of von Neumann regular rings. J. pure appl. Algebra 33, No. 3, 295-312 (1984) · Zbl 0541.16021
[11] Milnor, J.: Introduction to algebraic K-theory. Ann. math. Stud. 72 (1971) · Zbl 0237.18005
[12] Rieffel, M. A.: Dimension and stable rank in the K-theory of c\ast-algebaas. Proc. London math. Soc. (3) 46, 301-333 (1983) · Zbl 0533.46046
[13] Vasertein, L. N.: Transl. math. Ussr--sb.. Math. ussr--sb. 8, 383-400 (1969)
[14] Vaserstein, L. N.: Transl. math notes. Math notes 5, 141-148 (1969)
[15] Vaserstein, L. N.: Transl. functional anal. Appl.. Functional anal. Appl. 5, 102-110 (1971)
[16] Vaserstein, L. N.: Transl. math. Ussr--sb.. Math. ussr--sb. 22, 271-303 (1974)
[17] Vaserstein, L. N.: Transl. russian math. Survéys. Russian math. Survéys 31, No. 4, 89-156 (1976)
[18] Vaserstein, L. N.; Suslin, A. A.: Transl. math. USSR--izv.. Math. USSR--izv. 10, 937-1001 (1976)
[19] Vaserstein, L. N.: Bass’s first stable range condition. J. pure appl. Algebra 34, No. 2--3, 319-330 (1984) · Zbl 0547.16017
[20] L. N. Vaserstein, Computation of K1 via Mennicke symbols, Comm. Algebra, to appear.
[21] Godefroid, M.: Déterminants sur certains anneaux non commutatifs. C. R. Acad. sci. Paris ser. I math. 301, No. 10, 467-470 (1985) · Zbl 0584.16012