×

zbMATH — the first resource for mathematics

Partially ordered sets. (English) JFM 63.0833.04
Verf. studiert die Mengen, zwischen deren Elementen eine binäre Relation \(\subset\) besteht, welche die beiden Axiome erfüllt: 1) Aus \(a\subset b\) und \(b\subset c\) folgt \(a\subset c\). 2) Für alle \(a\) gilt \(a\subset a\). Es kann vorkommen, daß weder \(a\subset b\) noch \(b\subset a\) gilt, d. h. man hat eine teilweise lineare Anordnung. In gewöhnlicher Weise definiert Verf. die Relation = und die Summen- und Produktbildung. Außerdem heißt \(a'\) Produktkomplement zu \(a\), wenn \(aa'=0\) ist und aus \(ax=0\) immer \(x\subset a'\) folgt; dabei ist \(0\subset x\) für alle \(x\). Auf der Vertauschung von \(\subset\) und \(\supset\) beruht der Dualismus der Theorie.
Verf. klassifiziert die teilweise geordneten Mengen nach der Art, wie sie in bezug auf die Operationen abgeschlossen sein können; dabei werden sechs Postulate mit den dual entsprechenden betrachtet. Mittels einer Reihe von Beispielen werden einige Unabhängigkeiten dieser Postulate bewiesen. Weiter werden Homomorphismen, Isomorphismen usw. betrachtet, nämlich Abbildungen, die treu sind in bezug auf die Relation \(\subset\) und eventuell noch gewisse Operationen. Danach studiert er die multiplikativen Systeme, nämlich solche, worin das Produkt \(ab\) stets existiert; vollständig multiplikativ heißt das System, wenn die Produkte beliebig (auch unendlich) vieler Elemente darin existieren. Ist das System (vollständig) multiplikativ sowohl in bezug auf \(\subset\) wie auf \(\supset\), so heißt es (complete) “lattice” (Verband nach Fritz Klein). Er untersucht die Bedingung dafür, daß die Multiplikation distributiv ist. Weiter beweist er Sätze über Komplemente, indem drei weitere Postulate hinzugefügt werden. Bedingungen dafür, daß die Menge eine Boolesche Algebra darstellt, werden angegeben.
In dem letzten Teil der Arbeit werden Erweiterungen der Mengen studiert. Gewisse eindeutig bestimmte minimale Erweiterungen heißen kanonisch. Unter Anwendung der Dedekindschen Schnitte zeigt er, daß eine kanonische Erweiterung der Menge \(K\) zu einem vollständigen Verband \(L\) stets möglich ist. Ist \(K\) eine Boolesche Algebra, so ist \(L\) eine vollständige Boolesche Algebra. Zum Schluß untersucht Verf. die Erweiterung der distributiven Verbände zu Booleschen Algebren. Er beweist z. B., daß jede teilweise geordnete Menge zu einer vollständigen Booleschen Algebra derart erweitert werden kann, daß 0 und 1 (Allelement), endliche Produkte und unbeschränkte Summen erhalten bleiben. (III 5 B.)

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexandroff, Paul, Sur les espaces discrets, Comptes Rendus, vol. 200 (1936), pp. 1649-1651. · Zbl 0011.32602
[2] Albert A. Bennett, Semi-Serial Order, Amer. Math. Monthly 37 (1930), no. 8, 418 – 423. · JFM 56.0049.03 · doi:10.2307/2298431 · doi.org
[3] Birkhoff, Garrett, On the combination of subalgebras, Proceedings of the Cambridge Philosophical Society, vol. 29 (1933), pp. 441-464. · Zbl 0007.39502
[4] Garrett Birkhoff, On the Lattice theory of ideals, Bull. Amer. Math. Soc. 40 (1934), no. 8, 613 – 619. · JFM 60.0093.01
[5] Dedekind, R., Stetigkeit und irrationale Zahlen, authorized translation entitled Essays on Number, Chicago, Open Court, 1901.
[6] R. Dedekind, Ueber die von drei Moduln erzeugte Dualgruppe, Math. Ann. 53 (1900), no. 3, 371 – 403 (German). · JFM 31.0211.01 · doi:10.1007/BF01448979 · doi.org
[7] Fraenkel, A., Sur l’axiome du choix, L’Enseignement Mathématique, vol. 34 (1935), pp. 32-51. · Zbl 0014.25403
[8] Freudenthal, Hans, Zur Abstraktion des Integralbegriffs, Proceedings, Akademie van Wettenschappen te Amsterdam, vol. 39 (1936), pp. 741-746. · Zbl 0014.29704
[9] Heinrich Grell, Beziehungen zwischen den Idealen verschiedener Ringe, Math. Ann. 97 (1927), no. 1, 490 – 523 (German). · JFM 53.0116.03 · doi:10.1007/BF01447879 · doi.org
[10] Hausdorff, F., Grundzüge der Mengenlehre, 1st edition, Leipzig, Von Veit, 1914. · JFM 45.0123.01
[11] Hausdorff, F., Mengenlehre, 2d edition, Leipzig, de Gruyter, 1927. · JFM 53.0169.01
[12] Edward V. Huntington, Sets of independent postulates for the algebra of logic, Trans. Amer. Math. Soc. 5 (1904), no. 3, 288 – 309. · JFM 35.0087.02
[13] Edward V. Huntington, New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia mathematica, Trans. Amer. Math. Soc. 35 (1933), no. 1, 274 – 304. · Zbl 0006.24204
[14] Fritz Klein-Barmen, Grundzüge der Theorie der Verbände, Math. Ann. 111 (1935), no. 1, 596 – 621 (German). · Zbl 0012.14502 · doi:10.1007/BF01472242 · doi.org
[15] Klein, Fritz, Über ausgeglichene Verbände, Mathematische Annalen, vol. 112 (1936), pp. 411-418. · JFM 62.0089.03
[16] Karl Menger, New foundations of projective and affine geometry, Ann. of Math. (2) 37 (1936), no. 2, 456 – 482. In collaboration with Franz Alt and Otto Schreiber. · Zbl 0014.07601 · doi:10.2307/1968458 · doi.org
[17] von Neumann, J., Continuous geometry, also, Examples of continuous geometries, Proceedings of the National Academy of Sciences, vol. 22 (1936), pp. 92-108. · Zbl 0014.22308
[18] Ore, O., On the foundations of abstract algebra, Annals of Mathematics, (2), (I) vol. 36 (1935), pp. 406-437, (II) vol. 37 (1936), pp. 265-292. · JFM 61.0111.09
[19] C. S. Peirce, On the Algebra of Logic, Amer. J. Math. 3 (1880), no. 1, 15 – 57. · JFM 12.0041.01 · doi:10.2307/2369442 · doi.org
[20] Quine, W. V., A System of Logistic, Cambridge, Harvard University Press, 1934. · JFM 60.0845.03
[21] Schröder, Ernst, Vorlesungen über die Algebra der Logik, Leipzig, Teubner, 1890. · JFM 22.0073.02
[22] Marshall Harvey Stone, Linear transformations in Hilbert space, American Mathematical Society Colloquium Publications, vol. 15, American Mathematical Society, Providence, RI, 1990. Reprint of the 1932 original. · Zbl 0005.40003
[23] M. H. Stone, Postulates for Boolean Algebras and Generalized Boolean Algebras, Amer. J. Math. 57 (1935), no. 4, 703 – 732. · Zbl 0012.29002 · doi:10.2307/2371008 · doi.org
[24] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), no. 1, 37 – 111. · Zbl 0014.34002
[25] Tarski, A., Zur Grundlegung der Boolschen Algebra, Fundamenta Mathematicae, vol. 24 (1935), pp. 177-198. · Zbl 0011.00203
[26] A. W. Tucker, Cell spaces, Ann. of Math. (2) 37 (1936), no. 1, 92 – 100. · Zbl 0013.28304 · doi:10.2307/1968689 · doi.org
[27] Zermelo, E., Neuer Beweis für die Möglichkeit einer Wohlordnung, Mathematische Annalen, vol. 65 (1908), pp. 107-128. · JFM 38.0096.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.