zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Absolute stable rank and Witt cancellation for noncommutative rings. (English) Zbl 0639.16015
Bass introduced the notion of “stable range” conditions on a ring R in order to characterize those integers n for which every matrix in GL${}\sb n$(R) can be row reduced to a matrix with the same last row and column as the identity matrix. Similar questions concerning orthogonal groups over commutative rings led M. R. Stein to introduce “absolute stable range” conditions for commutative rings. The authors of this paper take up the question of absolute stable range and its connection with cancellation of quadratic forms over non-commutative rings. They provide a concise survey of previous results and their interconnections (including some examples of rings whose stable ranges and absolute stable ranges differ) and prove several new and interesting theorems.
Reviewer: M.R.Stein

MSC:
16E20Grothendieck groups and $K$-theory of noncommutative rings
20G35Linear algebraic groups over adèles and other rings and schemes
11E16General binary quadratic forms
WorldCat.org
Full Text: DOI EuDML
References:
[1] Bak, A.: On modules with quadratic forms In: AlgebraicK-Theory and its Geometric Applications (Lect. Notes Math. vol. 108, pp. 55-66) Berlin Heidelberg New York: Springer 1969
[2] Bak, A.: Definitions and problems in surgery and related groups. Gen. Topol. Appl.7, 215-231 (1977) · Zbl 0359.57018 · doi:10.1016/0016-660X(77)90033-2
[3] Bak, A.:K-Theory of Forms. Ann. Math. Studies98, 1981 · Zbl 0465.10013
[4] Bass, H.:K-Theory and stable algebra. Publ. Math. I.H.E.S.22, 5-60 (1964) · Zbl 0248.18025
[5] Bass, H.: AlgebraicK-Theory. New York: W.A. Benjamin, Inc., 1968 · Zbl 0174.30302
[6] Bass, H.: Unitary algebraicK-Theory. In: AlgebraicK-Theory III (Lect. Notes Math. vol. 343, pp. 57-265) Berlin Heidelberg New York: Springer 1973
[7] Bass, H., Milnor, J., Serre, J.-P.: Solution of the congruence subgroup problem forSL n (n?3) andS p 2n (n?2). Publ. Math. I.H.E.S.33, 58-137 (1967) · Zbl 0174.05203
[8] Estes, D.R., Guralnick, R.M.: Module equivalences: Local to global. When primitive polynomials represent units. J. Algebra77, 138-157 (1982) · Zbl 0492.13005 · doi:10.1016/0021-8693(82)90282-4
[9] Estes, D.R., Ohm, J.: Stable range in commutative rings. J. Algebra7, 343-362 (1967) · Zbl 0156.27303 · doi:10.1016/0021-8693(67)90075-0
[10] Stein, M.R.: Stability theorems forK 1,K 2 and related functors modeled on Chevalley groups. Jpn. J. Math.4, 77-108 (1978) · Zbl 0403.18010
[11] Tits, J.: Formes quadratiques, groupes orthogonaux et algebres de Clifford. Invent. Math.5, 19-41 (1968) · Zbl 0155.05202 · doi:10.1007/BF01404536
[12] Vaserstein, L.N.: Stable rank of rings and dimensions of topological spaces. Funct. Anal. Appl.5, 102-110 (1971); Funk. Anal. Pril.5, 17-27 (1971) · Zbl 0239.16028 · doi:10.1007/BF01076414
[13] Vaserstein, L.N.: Stabilization for classical groups over rings. Math. USSR Sb.22, 271-303 (1975); Mat. Sb.93 268-295 (1974) · Zbl 0305.18007 · doi:10.1070/SM1974v022n02ABEH001693
[14] Wall, C.T.C.: On the axiomatic foundation of the theory of hermitian forms. Proc. Camb. Philos. Soc.67, 243-250 (1970) · Zbl 0197.31103 · doi:10.1017/S0305004100045515
[15] Wall, C.T.C.: On the classification of Hermitian forms II. Semisimple rings. Invent. Math.18, 119-141 (1972) · Zbl 0242.10011 · doi:10.1007/BF01389715