Voĭna, A. A. Statistical estimation in a scheme of random variables on a Markov chain in case of incomplete observations. (Russian) Zbl 0639.62080 Teor. Veroyatn. Mat. Stat., Kiev 37, 16-26 (1987). The author considers an ergodic stationary Markov chain x(t), \(t\in N\), walking over a sequence of i.i.d. random vectors \((\xi_ i^{(t)}\); \(i=1,...,k)\). Let the composition \(\eta (t)=\xi^{(t)}_{x(t)}\) be observable only, and the transition probabilities \(p_{ij}\) of x and distribution functions \(F_ i\) of \(\xi_ i^{(1)}\) depend on an unknown vector parameter \(\theta\) with true value \(\theta\) 0. Using a modification of a posteriori probability principle, under smoothness and nondegeneracy assumptions on \(p_{ij}^{(\theta)}\) and \(F_ i^{(\theta)}\), one establishes consistency and asymptotic normality of the estimators for \(\theta\) 0, and for the first moments, and the quantiles of \(F_ i^{(\theta \quad 0)}\). Reviewer: E.I.Trofimov Cited in 1 ReviewCited in 1 Document MSC: 62M05 Markov processes: estimation; hidden Markov models 62F12 Asymptotic properties of parametric estimators 62E20 Asymptotic distribution theory in statistics Keywords:ergodic stationary Markov chain; transition probabilities; a posteriori probability principle; consistency; asymptotic normality; moments; quantiles PDFBibTeX XMLCite \textit{A. A. Voĭna}, Teor. Veroyatn. Mat. Stat., Kiev 37, 16--26 (1987; Zbl 0639.62080)