Girko, V. L.; Matvejchuk, A. K. Limit theorem for functionals of random walks. (Russian) Zbl 0644.60032 Teor. Veroyatn. Mat. Stat., Kiev 36, 33-36 (1987). Let \(\{\xi_ n\}^{\infty}_{n=1}\) be independent random variables; \[ S_ n=\sum^{n}_{k=1}\xi_ k,\quad f(x)=\sum^{r}_{m=1}C_ m\exp (iU_ mx),\quad | C_ m| \leq C<\infty. \] Under some conditions on the characteristic functions of \(\xi_ n\), a limit theorem for the variables \(\nu_ n=\sum^{n}_{k=1}f(S_ n)\) is proved. Reviewer: G.A.Sokhadze Cited in 1 Review MSC: 60F17 Functional limit theorems; invariance principles 60G50 Sums of independent random variables; random walks 60E10 Characteristic functions; other transforms Keywords:characteristic functions PDFBibTeX XMLCite \textit{V. L. Girko} and \textit{A. K. Matvejchuk}, Teor. Veroyatn. Mat. Stat., Kiev 36, 33--36 (1987; Zbl 0644.60032)