# zbMATH — the first resource for mathematics

The K-theory of semilinear endomorphisms. (English) Zbl 0656.16011
Given an automorphism $$\phi$$ of a ring k, the twisted polynomial ring over k in a variable T has multiplication given by $$aT=T\phi (a)$$. Let $$R^{\pm}$$ be the Laurent polynomial ring and let $$R^-$$ be the skew polynomial ring in $$T^{-1}$$. A module M over the “twisted” projective line X is given as a triple $$(M^+,M^-,\vartheta_ M)$$, with $$\vartheta_ M: M^+R^{\pm}\cong M^-R^{\pm}$$ an isomorphism. The “vector bundles” over X are those P with $$P^+$$ and $$P^-$$ both projective; these form a category $${\mathcal P}_ X.$$
Define the category Nil($$\phi)$$ to be that of pairs (V,f) with V a projective k-module and f a $$\phi$$-semilinear nilpotent endomorphism. Standard splittings give $$K_ i\underline{Nil}(\phi)=K_ ik\oplus Nil_ i(\phi)$$, $$K_ iR^+=K_ ik\oplus NK_ i(\phi)$$, defining the groups $$Nil_ i\phi$$ and $$NK_ i(\phi)$$. The main results are:
(a) $$K_ iX\cong K_ ik\oplus K_ ik$$ $$(K_ iX=K_ i{\mathcal P}_ X)$$, (b) $$NK_ i(\phi^{-1})\cong Nil_{i-1}(\phi)$$, (c) $$K_ iR^{\pm}\cong F_{i-1}(\phi)\oplus Nil_{i-1}(\phi)\oplus Nil_{i- 1}(\phi^{-1})$$, (d) There is an exact sequence $$...\to F_ i(\phi)\to K_ i(k)\to^{1-\phi_*}K_ i(k)\to$$. When k is a division ring, there is a localization sequence $$\to K_ iAut \phi \to K_ iX\to K_ iB\to$$, where B is a pull-back of localizations of $$R^+$$ and $$R^-$$ and Aut $$\phi$$ is the category of $$\phi$$-semilinear automorphisms on k- spaces.
Reviewer: M.E.Keating

##### MSC:
 16E20 Grothendieck groups, $$K$$-theory, etc. 16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras) 16W20 Automorphisms and endomorphisms 18F25 Algebraic $$K$$-theory and $$L$$-theory (category-theoretic aspects)
Full Text:
##### References:
 [1] Bass, H, Algebraic K-theory, (1968), Benjamin New York/Amsterdam · Zbl 0174.30302 [2] Farrell, F; Hsiang, W, A formula for K1rx[T], (), 192-218 [3] Grayson, D, K-theory and localization of noncommutative rings, J. pure appl. algebra, 18, 125-127, (1980) · Zbl 0441.16020 [4] Grayson, D, Higher algebraic K-theory, II [after D. quillen], () [5] Grayson, D, The K-theory of endomorphisms, J. algebra, 48, 439-446, (1977) · Zbl 0413.18010 [6] Hiller, H, Λ-rings and algebraic K-theory, J. pure appl. algebra, 20, 241-266, (1981) · Zbl 0471.18007 [7] Karoubi, M, Localisation de formes quadratiques, I, Ann. sci. école norm. sup., 7, 359-404, (1974) · Zbl 0325.18011 [8] Lang, S, Algebraic groups over finite fields, Amer. J. math., 78, (1956) · Zbl 0073.37901 [9] Lazard, Autour de la platitude, Bull. soc. math. France, 97, 81-128, (1969) · Zbl 0174.33301 [10] Quillen, D, Higher algebraic K-theory, I, () · Zbl 0292.18004 [11] Quillen, D, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of math., 96, 552-586, (1972) · Zbl 0249.18022 [12] Ranicki, A, Exact sequences in the algebraic theory of surgery, (1981), Princeton Univ. Press Princeton, NJ · Zbl 0471.57012 [13] Siebenmann, A total Whitehead torsion obstruction to fibering over the circle, Comm. math. helv., 45, 1-48, (1970) · Zbl 0215.24603 [14] Stenström, B, Rings of quotients, (1975), Springer-Verlag Heidelberg/Berlin [15] Suslin, A, On the K-theory of algebraically closed fields, Invent. math., 73, 241-245, (1983) · Zbl 0514.18008 [16] Waldhausen, F, Algebraic K-theory of generalized free products, Ann. of math., 108, 135-256, (1978) · Zbl 0407.18009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.