zbMATH — the first resource for mathematics

On the Fokker-Planck-Boltzmann equation. (English) Zbl 0671.35068
Summary: We consider the Boltzmann equation perturbed by Fokker-Planck type operator. To overcome the lack of strong a priori estimates and to define a meaningful collision operator, we introduce a notion of renormalized solution which enables us to establish stability results for sequences of solutions and global existence for the Cauchy problem with large data. The proof of stability and existence combines renormalization with an analysis of a defect measure.

35Q99 Partial differential equations of mathematical physics and other areas of application
35B20 Perturbations in context of PDEs
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
35G25 Initial value problems for nonlinear higher-order PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
Full Text: DOI
[1] Bènilan, Ph., Brézis, H., Crandall, M.G.: A semilinear elliptic equation inL 1(R N ). Ann. Sc. Norm. Sup. Pisa2, 523-555 (1975)
[2] Cabannes, H.: The discrete Boltzmann equation (Theory and Application). Lecture Notes, University of California, Berkeley 1980 · Zbl 0462.76078
[3] Cercignani, C.: Theory and application of the Boltzmann equation. Edinburgh: Scottish Academic Press 1975 · Zbl 0403.76065
[4] Chapman, S., Cowling, T. G.: The mathematical theory of non-uniform gases. Cambridge: Cambridge University Press 1952 · Zbl 0049.26102
[5] DiPerna, R., Lions, P. L.: On the Cauchy problem for Boltzmann equations: Global existence and weak stability, preprint · Zbl 0698.45010
[6] DiPerna, R., Lions, P. L.: work in preparation
[7] Grad, H.: Asymptotic theory of the Boltzmann equation II. In: Rarefied Gas Dynamics, Vol. 1. Laurmann J. (ed.). p. 26-59; New York: Academic Press 1963 · Zbl 0115.45006
[8] Hamdache, K.: Sur l’existence globale et comportement asymptotique de quelques solutions de l’equation de Boltzmann. Paris: These d’Etat, Univ. P. et M. Curie 1986
[9] Hamdache, K.: Estimations uniformes des solutions de l’equation de Boltzmann par les methodes de viscosité artificielle et de diffusion de Fokker-Planck. C. R. Acad. Sci. Paris,302, 187-190 (1986) · Zbl 0597.76071
[10] Hamdache, K.: La methode de viscosité artificielle pour des modeles de la theorie cinétique discréte. To appear in J. Mecan. Theor. Appl.
[11] Hörmander, L.: The analysis of partial differential operators, Vol. I. Berlin Heidelberg, New York: Springer 1983 · Zbl 0521.35002
[12] Illner, R., Global existence results for discrete velocity models of the Boltzmann equation in several dimensions. J. Mecan. Theor. Appl.1, 611-622 (1982) · Zbl 0514.76073
[13] Loyalka, S. K.: Rarefied gas dynamic problems in environmental sciences. In: Proceedings 15th International Symposium on Rarefied Gas Dynamics, June 1986, Grado Italy. Boffi, V., Cercignani, C.: (eds.) Stuttgart: Teubner 1986
[14] Tartar, L.: Some existence theorems for semilinear hyperbolic systems in one space variable. MRC Report No. 2164, Univ. of Wisconsin-Madison · Zbl 0458.35064
[15] Truesdell, C., Muncaster, R.: Fundamentals of Maxwell’s kinetic theory of a simple monoatomic gas. New York: Academic Press 1980
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.