×

zbMATH — the first resource for mathematics

Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. (French) Zbl 0692.35063
For symmetrizable quasilinear hyperbolic systems \[ \partial v/\partial t+A_ 1(v)\partial v/\partial x+\sum^{n}_{i=1}A_ 2^{(i)}\partial v/\partial y_ i=0, \] hypersurface \(x=\phi_ 0(y)\) \((\phi_ 0\) real, \(\phi_ 0\in C^{\infty}\), \(\phi_ 0(0)=\phi '_ 0(0)=0)\) there are given the data: \(v(x,y,0)=v_+(x,y)\) if \(x>\phi_ 0(y)\) and \(v(x,y,0)=v_-(x,y)\) if \(x<\phi_ 0(y)\). Local existence of rarefaction wave solutions is proved corresponding to a simple real genuinely nonlinear eigenvalue of the system.
Reviewer: L.G.Vulkov

MSC:
35L60 First-order nonlinear hyperbolic equations
35A07 Local existence and uniqueness theorems (PDE) (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alinhac S., Sém (1986)
[2] DOI: 10.1080/03605308608820419 · Zbl 0596.47023
[3] Chen Shu-Xing : Existence of local solution to supersonic flow around three dimensional wring, Preprint.
[4] Hamilton R.S., Bull. of the Amer. Math. Soc 7 (1982) · Zbl 0499.58003
[5] DOI: 10.1007/BF00251855 · Zbl 0331.35020
[6] DOI: 10.1002/cpa.3160340405 · Zbl 0476.76068
[7] DOI: 10.1002/cpa.3160100406 · Zbl 0081.08803
[8] Majda A., Memoirs of the Amer. Math. Soc 275 pp 281– (1983)
[9] DOI: 10.1002/cpa.3160280504 · Zbl 0314.35061
[10] DOI: 10.2307/2000375 · Zbl 0619.35075
[11] DOI: 10.1215/S0012-7094-86-05349-4 · Zbl 0631.35056
[12] Meyer Y., Suppl. a1 Rend. del Cir. Mat. dl Palermo (1981)
[13] Moser J., Ann. Scu. Norm. Sup. Pisa 30 pp 265– (1966)
[14] Nirenberg L., Ann. Scu. Norm. Sup. Pisa 13 pp 116– (1959)
[15] DOI: 10.1090/S0002-9947-1985-0797053-4
[16] DOI: 10.1512/iumj.1985.34.34020 · Zbl 0559.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.