×

zbMATH — the first resource for mathematics

Problème mixte hyperbolique quasi-linéaire caractéristique. (A mixed characteristic quasilinear hyperbolic problem). (French) Zbl 0712.35061
The paper considers local existence (in time) of strong solutions to mixed problems for symmetrizable, quasi-linear hyperbolic systems of p.d.e.’s with completely nonlinear limiting conditions at a characteristic boundary. One key device that is used is to come up with the right function spaces in which to formulate the problem.
Reviewer: S.G.Krantz

MSC:
35L60 First-order nonlinear hyperbolic equations
35L45 Initial value problems for first-order hyperbolic systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agemi R., Hokkaido Math. Jour. 10 pp 156– (1981) · Zbl 0472.76065
[2] DOI: 10.1080/03605308908820595 · Zbl 0692.35063
[3] Berao Da Veiga H., Ann. Scu. Norm. Sup. pp 317–
[4] Chen S., Séminaire Ecole Polytechnique 10 (1987)
[5] DOI: 10.1002/cpa.3160320102 · Zbl 0378.76043
[6] DOI: 10.1002/cpa.3160110306 · Zbl 0083.31802
[7] Kato T., C.I.M.E. 11 (1976)
[8] Krzyanski M., Studia Math. T. 11 pp 162– (1936)
[9] DOI: 10.1002/cpa.3160130307 · Zbl 0094.07502
[10] DOI: 10.1002/cpa.3160280504 · Zbl 0314.35061
[11] Melrose R., Ann. Math. 28 pp 117– (1984)
[12] Metivier G., Journées E.D.P. Saint-Jean-de-Monts 28 (1986)
[13] Metivier G., Séminaire Bourbaki 671 (1986)
[14] Moser J., Ann. Scu. Norm. Sup. 53 pp 265– (1984)
[15] Moser J., Ann. Scu. Norm. Sup. 20 pp 265– (1966)
[16] Ohkubo T., Hokkaido Math. Jour. 18 pp 79– (1989) · Zbl 0689.35051
[17] Rauch J., 1985 291 pp 167– (1989)
[18] Rauch J., Trans. Amer. Math. Soc. 189 pp 303– (1974)
[19] Rauch J., Classical, conormal, semilinear waves, Séminaire Ecole Polytechnique 189 (1985)
[20] DOI: 10.1007/BF01210792 · Zbl 0612.76082
[21] Shibata Y., Preprint
[22] Yanagisawa T., Hokkaido Math. Jour. 16 pp 295– (1987) · Zbl 0657.76085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.