×

zbMATH — the first resource for mathematics

Fonctions élémentaires et lemme fondamental pour le changement de base stable. (Elementary functions and fundamental lemma for stable base change). (French) Zbl 0731.22012
The author gives a different proof for the fundamental lemma for stable base change proven by L. Clozel [in Duke Math. J. 61, 255-302 (1990; see the preceding review Zbl 0731.22011)]. The proof does not need any difficult result from harmonic analysis except for the classification of Langlands, especially it does not use the Howe conjecture.
Reviewer: K.I.Ohta (Tokyo)

MSC:
22E50 Representations of Lie and linear algebraic groups over local fields
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula , Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. · Zbl 0682.10022
[2] A. Borel and J. Tits, Groupes réductifs , Inst. Hautes Études Sci. Publ. Math. (1965), no. 27, 55-150. · Zbl 0145.17402
[3] A. Borel and N. R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups , Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J., 1980. · Zbl 0443.22010
[4] W. Casselman, Introduction to the theory of admissible representations of \(\mathfrakp\)-adic reductive groups , prépublication.
[5] W. Casselman, Characters and Jacquet modules , Math. Ann. 230 (1977), no. 2, 101-105. · Zbl 0337.22019
[6] W. Casselman, The unramified principal series of \(\mathfrak p\)-adic groups. I. The spherical function , Compositio Math. 40 (1980), no. 3, 387-406. · Zbl 0472.22004
[7] L. Clozel, The fundamental lemma for stable base change , Duke Math. J. 61 (1990), no. 1, 255-302. · Zbl 0731.22011
[8] Y. Z. Flicker, Stable base change for spherical functions , Nagoya Math. J. 106 (1987), 121-142. · Zbl 0616.22005
[9] D. Keys, Reducibility of unramified unitary principal series representations of \(p\)-adic groups and class-\(1\) representations , Math. Ann. 260 (1982), no. 4, 397-402. · Zbl 0488.22026
[10] R. E. Kottwitz, Base change for unit elements of Hecke algebras , Compositio Math. 60 (1986), no. 2, 237-250.
[11] R. E. Kottwitz, Stable trace formula: elliptic singular terms , Math. Ann. 275 (1986), no. 3, 365-399. · Zbl 0577.10028
[12] R. E. Kottwitz, Tamagawa numbers , Ann. of Math. (2) 127 (1988), no. 3, 629-646. JSTOR: · Zbl 0678.22012
[13] J.-P. Labesse, Formule des traces et fonction \(\zeta_\Gamma\) de Ihara , Variétés de Shimura et Fonctions \(L\), 6, Public. Math. de l’Univ. Paris VII, 1979, pp. 165-178. · Zbl 0542.22016
[14] R. P. Langlands, Les débuts d’une formule des traces stable , Publications Mathématiques de l’Université Paris VII [Mathematical Publications of the University of Paris VII], vol. 13, Université de Paris VII U.E.R. de Mathématiques, Paris, 1983. · Zbl 0532.22017
[15] J. Tits, Reductive groups over local fields , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29-69. · Zbl 0415.20035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.