Beuzart-Plessis, Raphaël; Liu, Yifeng; Zhang, Wei; Zhu, Xinwen Isolation of cuspidal spectrum, with application to the Gan-Gross-Prasad conjecture. (English) Zbl 07395719 Ann. Math. (2) 194, No. 2, 519-584 (2021). Summary: We introduce a new technique for isolating components on the spectral side of the trace formula. By applying it to the Jacquet-Rallis relative trace formula, we complete the proof of the global Gan-Gross-Prasad conjecture and its refinement Ichino-Ikeda conjecture for \(\mathrm{U}(n)\times\mathrm{U}(n+1)\) in the stable case. Cited in 1 ReviewCited in 6 Documents MSC: 11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols 11F70 Representation-theoretic methods; automorphic representations over local and global fields 11F72 Spectral theory; trace formulas (e.g., that of Selberg) Keywords:trace formula; multipliers; isolation of spectrum; cuspidal automorphic representations; Gan-Gross-Prasad conjecture PDF BibTeX XML Cite \textit{R. Beuzart-Plessis} et al., Ann. Math. (2) 194, No. 2, 519--584 (2021; Zbl 07395719) Full Text: DOI arXiv