Milman, Emanuel; Neeman, Joe The Gaussian double-bubble and multi-bubble conjectures. (English) Zbl 1484.49072 Ann. Math. (2) 195, No. 1, 89-206 (2022). Summary: We establish the Gaussian Multi-Bubble Conjecture: the least Gaussian-weighted perimeter way to decompose \(\mathbb{R}^n\) into \(q\) cells of prescribed (positive) Gaussian measure when \(2\leq q\leq n+1\), is to use a “simplicial cluster,” obtained from the Voronoi cells of \(q\) equidistant points. Moreover, we prove that simplicial clusters are the unique isoperimetric minimizers (up to null-sets). In particular, the case \(q=3\) confirms the Gaussian Double-Bubble Conjecture: the unique least Gaussian-weighted perimeter way to decompose \(\mathbb{R}^n\) \((n\geq 2)\) into three cells of prescribed (positive) Gaussian measure is to use a tripod-cluster, whose interfaces consist of three half-hyperplanes meeting along an \((n-2)\)-dimensional plane at \(120^{\circ}\) angles (forming a tripod or “Y” shape in the plane). The case \(q=2\) recovers the classical Gaussian isoperimetric inequality.To establish the Multi-Bubble conjecture, we show that in the above range of \(q\), stable regular clusters must have flat interfaces, therefore consisting of convex polyhedral cells (with at most \(q-1\) facets). In the double-bubble case \(q=3\), it is possible to avoid establishing flatness of the interfaces by invoking a certain dichotomy on the structure of stable clusters, yielding a simplified argument. MSC: 49Q20 Variational problems in a geometric measure-theoretic setting 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature Keywords:isoperimetric problem; isoperimetric profile; Gaussian measure; double-bubble; multi-bubble; stable clusters PDF BibTeX XML Cite \textit{E. Milman} and \textit{J. Neeman}, Ann. Math. (2) 195, No. 1, 89--206 (2022; Zbl 1484.49072) Full Text: DOI arXiv OpenURL References: [1] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. {I}, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 12, 623-727 (1959) · Zbl 0093.10401 [2] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. {II}, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 17, 35-92 (1964) · Zbl 0123.28706 [3] Almgren, Jr., F. J., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc.. Memoirs of the American Mathematical Society, 4, viii+199 pp. (1976) · Zbl 0327.49043 [4] Bakry, Dominique; Gentil, Ivan; Ledoux, Michel, Analysis and Geometry of {M}arkov Diffusion Operators, Grundlehren Math. Wissens., 348, xx+552 pp. (2014) · Zbl 1376.60002 [5] Bakry, Dominique; Ledoux, M., L\'{e}vy-{G}romov’s isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math.. Inventiones Mathematicae, 123, 259-281 (1996) · Zbl 0855.58011 [6] Barchiesi, Marco; Brancolini, Alessio; Julin, Vesa, Sharp dimension free quantitative estimates for the {G}aussian isoperimetric inequality, Ann. Probab.. The Annals of Probability, 45, 668-697 (2017) · Zbl 1377.49050 [7] Barthe, F.; Maurey, B., Some remarks on isoperimetry of {G}aussian type, Ann. Inst. H. Poincar\'{e} Probab. Statist.. Annales de l’Institut Henri Poincar\'{e}. Probabilit\'{e}s et Statistiques, 36, 419-434 (2000) · Zbl 0964.60018 [8] Bavard, Christophe; Pansu, Pierre, Sur le volume minimal de {\({\bf R}^2\)}, Ann. Sci. \'{E}cole Norm. Sup. (4). Annales Scientifiques de l’\'{E}cole Normale Sup\'{e}rieure. Quatri\`eme S\'{e}rie, 19, 479-490 (1986) · Zbl 0611.53038 [9] Bayle, Vincent, A differential inequality for the isoperimetric profile, Int. Math. Res. Not.. International Mathematics Research Notices, 311-342 (2004) · Zbl 1080.53026 [10] Bayle, Vincent, Propri\'et\'es de concavit\'e du profil isop\'erim\'etrique et applications (2004) [11] Bayle, Vincent; Rosales, C\'{e}sar, Some isoperimetric comparison theorems for convex bodies in {R}iemannian manifolds, Indiana Univ. Math. J.. Indiana Univ. Mathematics Journal, 54, 1371-1394 (2005) · Zbl 1085.53025 [12] Bjorndahl, Christina; Karshon, Yael, Revisiting {T}ietze-{N}akajima: local and global convexity for maps, Canad. J. Math.. Canadian Journal of Mathematics. Journal Canadien de Math\'{e}matiques, 62, 975-993 (2010) · Zbl 1198.53094 [13] Bobkov, S. G., An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in {G}auss space, Ann. Probab.. The Annals of Probability, 25, 206-214 (1997) · Zbl 0883.60031 [14] Bobkov, S. G., A localized proof of the isoperimetric {B}akry-{L}edoux inequality and some applications, Teor. Veroyatnost. i Primenen.. Rossi\u{\i}skaya Akademiya Nauk. Teoriya Veroyatnoste\u{\i} i ee Primeneniya, 47, 340-346 (2002) · Zbl 1033.60012 [15] Bojarski, Bogdan; Haj{\l}asz, Piotr; Strzelecki, Pawe\l, Sard’s theorem for mappings in {H}\"{o}lder and {S}obolev spaces, Manuscripta Math.. Manuscripta Mathematica, 118, 383-397 (2005) · Zbl 1098.46024 [16] Borell, Christer, The {B}runn-{M}inkowski inequality in {G}auss space, Invent. Math.. Inventiones Mathematicae, 30, 207-216 (1975) · Zbl 0292.60004 [17] Borell, Christer, The {E}hrhard inequality, C. R. Math. Acad. Sci. Paris. Comptes Rendus Math\'{e}matique. Acad\'{e}mie des Sciences. Paris, 337, 663-666 (2003) · Zbl 1031.60013 [18] Burago, Yu. D.; Zalgaller, V. A., Geometric Inequalities, Grundlehren Math. Wissen.. translated from the Russian by A. B. Sosinski\u{\i}, Springer Series in Soviet Mathematics, 285, xiv+331 pp. (1988) · Zbl 0633.53002 [19] Caffarelli, Luis A., Monotonicity properties of optimal transportation and the {FKG} and related inequalities, Comm. Math. Phys.. Communications in Mathematical Physics, 214, 547-563 (2000) · Zbl 0978.60107 [20] Carlen, E. A.; Kerce, C., On the cases of equality in {B}obkov’s inequality and {G}aussian rearrangement, Calc. Var. Partial Differential Equations. Calculus of Variations and Partial Differential Equations, 13, 1-18 (2001) · Zbl 1009.49029 [21] Colombo, M.; Edelen, N.; Spolaor, L., The singular set of minimal surfaces near polyhedral cones (2017) [22] Corneli, J.; Corwin, I.; Hurder, S.; Sesum, V.; Xu, Y.; Adams, E.; Davis, D.; Lee, M.; Visocchi, R.; Hoffman, N., Double bubbles in {G}auss space and spheres, Houston J. Math.. Houston Journal of Mathematics, 34, 181-204 (2008) · Zbl 1146.53004 [23] Corneli, Joseph; Hoffman, Neil; Holt, Paul; Lee, George; Leger, Nicholas; Moseley, Stephen; Schoenfeld, Eric, Double bubbles in {\({\bf S}^3\)} and {\({\bf H}^3\)}, J. Geom. Anal.. The Journal of Geometric Analysis, 17, 189-212 (2007) · Zbl 1118.53039 [24] Cotton, Andrew; Freeman, David, The double bubble problem in spherical space and hyperbolic space, Int. J. Math. Math. Sci.. International Journal of Mathematics and Mathematical Sciences, 32, 641-699 (2002) · Zbl 1036.49039 [25] Ehrhard, Antoine, Sym\'{e}trisation dans l’espace de {G}auss, Math. Scand.. Mathematica Scandinavica, 53, 281-301 (1983) · Zbl 0542.60003 [26] Ehrhard, Antoine, \'{E}l\'{e}ments extr\'{e}maux pour les in\'{e}galit\'{e}s de {B}runn-{M}inkowski gaussiennes, Ann. Inst. H. Poincar\'{e} Probab. Statist.. Annales de l’Institut Henri Poincar\'{e}. Probabilit\'{e}s et Statistique, 22, 149-168 (1986) · Zbl 0595.60020 [27] Federer, Herbert, Geometric Measure Theory, Grundlehren Math. Wissen., 153, xiv+676 pp. (1969) · Zbl 0176.00801 [28] Foisy, Joel, Soap bubble clusters in {\( \mathbb{R}^2\)} and {\( \mathbb{R}^3\)} (1991) [29] Foisy, Joel; Alfaro, Manuel; Brock, Jeffrey; Hodges, Nickelous; Zimba, Jason, The standard double soap bubble in {\({\bf R}^2\)} uniquely minimizes perimeter, Pacific J. Math.. Pacific Journal of Mathematics, 159, 47-59 (1993) · Zbl 0738.49023 [30] Hass, Joel; Hutchings, Michael; Schlafly, Roger, The double bubble conjecture, Electron. Res. Announc. Amer. Math. Soc.. Electronic Research Announcements of the American Mathematical Society, 1, 98-102 (1995) · Zbl 0864.53007 [31] Heilman, Steven, Gaussian isoperimetry for multiple sets, 220 pp. (2014) [32] Heilman, Steven, The structure of {G}aussian minimal bubbles, J. Geom. Anal.. Journal of Geometric Analysis, 31, 6307-6348 (2021) · Zbl 1472.60037 [33] Heilman, Steven; Jagannath, Aukosh; Naor, Assaf, Solution of the propeller conjecture in {\( \Bbb{R}^3\)}, Discrete Comput. Geom.. Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science, 50, 263-305 (2013) · Zbl 1279.28019 [34] Hutchings, Michael, The structure of area-minimizing double bubbles, J. Geom. Anal.. The Journal of Geometric Analysis, 7, 285-304 (1997) · Zbl 0935.53008 [35] Hutchings, Michael; Morgan, Frank; Ritor\'{e}, Manuel; Ros, Antonio, Proof of the double bubble conjecture, Ann. of Math. (2). Annals of Mathematics. Second Series, 155, 459-489 (2002) · Zbl 1009.53007 [36] Isaksson, Marcus; Mossel, Elchanan, Maximally stable {G}aussian partitions with discrete applications, Israel J. Math.. Israel Journal of Mathematics, 189, 347-396 (2012) · Zbl 1256.60017 [37] Kim, Young-Heon; Milman, Emanuel, A generalization of {C}affarelli’s contraction theorem via (reverse) heat flow, Math. Ann.. Mathematische Annalen, 354, 827-862 (2012) · Zbl 1257.35101 [38] Kinderlehrer, D.; Nirenberg, L.; Spruck, J., Regularity in elliptic free boundary problems, J. Analyse Math.. Journal d’Analyse Math\'{e}matique, 34, 86-119 (1978) · Zbl 0402.35045 [39] Kleiner, Bruce, An isoperimetric comparison theorem, Invent. Math.. Inventiones Mathematicae, 108, 37-47 (1992) · Zbl 0770.53031 [40] Kuwert, Ernst, Note on the isoperimetric profile of a convex body. Geometric Analysis and Nonlinear Partial Differential Equations, 195-200 (2003) · Zbl 1029.35009 [41] Lang, Serge, Real and Functional Analysis, Grad. Texts in Math., 142, xiv+580 pp. (1993) · Zbl 0831.46001 [42] Lang, Serge, Differential and {R}iemannian Manifolds, Grad. Texts in Math., 160, xiv+364 pp. (1995) · Zbl 0824.58003 [43] Lata{\l}a, Rafa{\l}, A note on the {E}hrhard inequality, Studia Math.. Studia Mathematica, 118, 169-174 (1996) · Zbl 0847.60012 [44] Maggi, Francesco, Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory, Cambridge Stud. Adv. Math., 135, xx+454 pp. (2012) · Zbl 1255.49074 [45] Masters, Joseph D., The perimeter-minimizing enclosure of two areas in {\(S^2\)}, Real Anal. Exchange. Real Analysis Exchange, 22, 645-654 (1996/97) · Zbl 0946.52004 [46] McGonagle, Matthew; Ross, John, The hyperplane is the only stable, smooth solution to the isoperimetric problem in {G}aussian space, Geom. Dedicata. Geometriae Dedicata, 178, 277-296 (2015) · Zbl 1325.53079 [47] Milman, E.; Neeman, J., The {G}aussian {D}ouble-{B}ubble {C}onjecture (2018) [48] Milman, E.; Neeman, J., Remarks on curvature blow-up and fundamental tones on multi-bubbles (2040) [49] Milman, E.; Neeman, J., The {G}aussian {M}ulti-{B}ubble {C}onjecture (2018) [50] Milman, E.; Neeman, J., Functional {G}aussian inequalities for vector-valued functions (2022) [51] {\relax Montesinos Amilibia}, A., Existence and uniqueness of standard bubble clusters of given volumes in {\( \mathbb{R}^N\)}, Asian J. Math.. Asian Journal of Mathematics, 5, 25-31 (2001) · Zbl 1018.53005 [52] Morgan, Frank, Soap bubbles in {\({\bf R}^2\)} and in surfaces, Pacific J. Math.. Pacific Journal of Mathematics, 165, 347-361 (1994) · Zbl 0820.53002 [53] Morgan, Frank, Regularity of isoperimetric hypersurfaces in {R}iemannian manifolds, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 355, 5041-5052 (2003) · Zbl 1063.49031 [54] Morgan, Frank, Manifolds with density, Notices Amer. Math. Soc.. Notices of the American Mathematical Society, 52, 853-858 (2005) · Zbl 1118.53022 [55] Morgan, Frank, Geometric Measure Theory. A beginner’s guide, illustrated by James F. Bredt, viii+263 pp. (2016) · Zbl 1338.49089 [56] Morgan, Frank; Johnson, David L., Some sharp isoperimetric theorems for {R}iemannian manifolds, Indiana Univ. Math. J.. Indiana Univ. Mathematics Journal, 49, 1017-1041 (2000) · Zbl 1021.53020 [57] Munkres, James R., Topology, xvi+537 pp. (2000) · Zbl 0951.54001 [58] Naber, Aaron; Valtorta, Daniele, Rectifiable-{R}eifenberg and the regularity of stationary and minimizing harmonic maps, Ann. of Math. (2). Annals of Mathematics. Second Series, 185, 131-227 (2017) · Zbl 1393.58009 [59] Nitsche, Johannes C. C., The higher regularity of liquid edges in aggregates of minimal surfaces, Nachr. Akad. Wiss. G\"{o}ttingen Math.-Phys. Kl. II. Nachrichten der Akademie der Wissenschaften zu G\"{o}ttingen. II. Mathematisch-Physikalische Klasse, 31-51 (1978) · Zbl 0403.53001 [60] Reichardt, Ben W., Proof of the double bubble conjecture in {\( \bold R^n\)}, J. Geom. Anal.. Journal of Geometric Analysis, 18, 172-191 (2008) · Zbl 1149.53009 [61] Reichardt, Ben W.; Heilmann, Cory; Lai, Yuan Y.; Spielman, Anita, Proof of the double bubble conjecture in {\({\bf R}^4\)} and certain higher dimensional cases, Pacific J. Math.. Pacific Journal of Mathematics, 208, 347-366 (2003) · Zbl 1056.53007 [62] Ritor\'{e}, Manuel; Rosales, C\'{e}sar, Existence and characterization of regions minimizing perimeter under a volume constraint inside {E}uclidean cones, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 356, 4601-4622 (2004) · Zbl 1057.53023 [63] Ros, Antonio, Isoperimetric inequalities in crystallography, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 17, 373-388 (2004) · Zbl 1048.53006 [64] Rosales, C\'{e}sar, Isoperimetric and stable sets for log-concave perturbations of {G}aussian measures, Anal. Geom. Metr. Spaces. Analysis and Geometry in Metric Spaces, 2, 328-358 (2014) · Zbl 1304.49096 [65] Rosales, C\'{e}sar; Ca\~{n}ete, Antonio; Bayle, Vincent; Morgan, Frank, On the isoperimetric problem in {E}uclidean space with density, Calc. Var. Partial Differential Equations. Calculus of Variations and Partial Differential Equations, 31, 27-46 (2008) · Zbl 1126.49038 [66] Schechtman, Gideon, Approximate {G}aussian isoperimetry for {\(k\)} sets. Geometric Aspects of Functional Aanalysis, Lecture Notes in Math., 2050, 373-379 (2012) · Zbl 1264.60011 [67] Schneider, Rolf, Convex Bodies: The {B}runn-{M}inkowski Theory, Encyc. Math. Appl., 44, xiv+490 pp. (1993) · Zbl 0798.52001 [68] Simon, Leon, Cylindrical tangent cones and the singular set of minimal submanifolds, J. Differential Geom.. Journal of Differential Geometry, 38, 585-652 (1993) · Zbl 0819.53029 [69] Sternberg, Peter; Zumbrun, Kevin, On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint, Comm. Anal. Geom.. Communications in Analysis and Geometry, 7, 199-220 (1999) · Zbl 0930.49024 [70] Sudakov, V. N.; Cirel{\cprime}son, B. S., Extremal properties of half-spaces for spherically invariant measures, Zap. Nau\v{c}n. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). Zapiski Nau\v{c}nyh Seminarov Leningradskogo Otdelenija Matemati\v{c}eskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI), 41, 14-24 (1974) [71] Sullivan, John M.; Morgan, Frank, Open problems in soap bubble geometry, Internat. J. Math.. International Journal of Mathematics, 7, 833-842 (1996) · Zbl 0867.53009 [72] Taylor, Jean E., The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2). Annals of Mathematics. Second Series, 103, 489-539 (1976) · Zbl 0335.49032 [73] Tripathi, Gautam, A matrix extension of the {C}auchy-{S}chwarz inequality, Econom. Lett.. Economics Letters, 63, 1-3 (1999) · Zbl 0916.90082 [74] White, Brian, Regularity of the singular sets in immiscible fluid interfaces and solutions to other {P}lateau-type problems. Miniconference on Geometry and Partial Differential Equations, Proc. Centre Math. Anal. Austral. Nat. Univ., 10, 244-249 (1986) [75] White, Brian, Regularity of singular sets for {P}lateau-type problems (2022) [76] Wichiramala, Wacharin, Proof of the planar triple bubble conjecture, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 567, 1-49 (2004) · Zbl 1078.53010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.