×

Measures of maximal entropy for surface diffeomorphisms. (English) Zbl 07483862

Decades ago, Newhouse put forward the question if a \(C^\infty\) diffeomorphism on a closed surface with positive topological entropy has a finite number of ergodic measures of maximal entropy. This paper answers Newhouse’s question affirmatively as stated in its Main Theorem: Let \(f\) be a \(C^\infty\) diffeomorphism on a closed surface and suppose its topological entropy \(h_{\mathrm{top}}(f) > 0\). Then (a) the number of ergodic measures of maximal entropy of \(f\) is finite, (b) when \(f\) is topologically transitive, it has a unique measure of maximal entropy, and (c) when \(f\) is topologically mixing, it unique measures of maximal entropy is isomorphic to a Bernoulli scheme. The proof of the Main Theorem is a consequence of a generalization of Smale’s Spectral Decomposition Theorem to \(C^\infty\) diffeomorphisms on closed surfaces with positive topological entropy, and a theorem that describes the dynamics from both the measurable and symbolic points of view, the latter being countable state Markov shifts.
The methods employed in the paper to \(C^\infty\) diffeomorphisms and measures of maximal entropy on closed surfaces also apply to \(C^r\) diffeomorphisms and equilibrium measures on closed surfaces for \(r>1\). For \(M\) a closed surface and \(f:M\to M\) a \(C^r\) diffeomorphism set \(\Vert Df^n\Vert = \max\{\Vert Df^n\vert_{T_xM}\Vert:x\in M\}\), \(\lambda^u(f) = \lim_{n\to\infty}(1/n)\log \Vert Df^n\Vert\), \(\lambda^s(f) = \lim_{n\to\infty}(1/n)\Vert Df^{-n}\Vert\), and \(\lambda_{\min}(f) = {\min}\{\lambda^s(f),\lambda^u(f)\}\). An extension of the Main Theorem is: Let \(f\) be a \(C^r\) diffeomorphism of a closed surface \(M\) for \(r>1\), and let \(\phi:M\to {\mathbb R}\cup\{-\infty\}\) be an admissible potential. Then (a) for any \(\chi>\lambda_{\min}(f)/r\) there are at most finitely many ergodic equilibrium measures for \(\phi\) with entropy strictly bigger than \(\chi\), and (b) each compact invariant transitive subset of \(M\) carries at most one ergodic hyperbolic equilibrium measure \(\mu\) for \(\phi\) with the unstable dimension of \(\mu\) bigger than \(1/r\), and at most one ergodic hyperbolic equilibrium measure \(\mu\) for \(\phi\) with stable dimension bigger than \(1/r\). A Corollary of this extension of the Main Theorem is: Let \(f\) be a \(C^r\) diffeomorphism on a closed surface for \(r>1\), and let \(\phi\) be an admissible potential. Assume that \[ \sup_{\nu\in {\mathbb P}_e(f)} \left\{ h(f,\nu) + \int \phi\ d\nu\right\} > \sup\phi + \frac{\lambda_{\min}(f)}{r} \] where \({\mathbb P}_e(f)\) is the set of \(f\)-invariant ergodic measures and \(h(f,\mu)\) is the metric entropy of \(f\) with respect to \(\nu\). Then \(f\) has at most infinitely many ergodic equilibrium measures, and if \(f\) is topologically transitive, then it has at most one.

MSC:

37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37B10 Symbolic dynamics
37B40 Topological entropy
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Abdenur, Flavio; Bonatti, Christian; Crovisier, Sylvain; D\'{\i}az, Lorenzo J., Generic diffeomorphisms on compact surfaces, Fund. Math.. Fundamenta Mathematicae, 187, 127-159 (2005) · Zbl 1089.37032
[2] Abdenur, Flavio; Crovisier, Sylvain, Transitivity and topological mixing for {\(C^1\)} diffeomorphisms. Essays in Mathematics and its Applications, 1-16 (2012) · Zbl 1346.37006
[3] Adler, R. L.; Weiss, B., Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A.. Proceedings of the National Academy of Sciences of the United States of America, 57, 1573-1576 (1967) · Zbl 0177.08002
[4] Avila, A.; Crovisier, S.; Wilkinson, A., {\(C^1\)} density of stable ergodicity, Adv. Math.. Advances in Mathematics, 379, 107496-68 (2021) · Zbl 1458.37048
[5] Barreira, Luis; Pesin, Yakov, Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyc. Math. Appli., 115, xiv+513 pp. (2007) · Zbl 1144.37002
[6] Ben Ovadia, Snir, Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds, J. Mod. Dyn.. Journal of Modern Dynamics, 13, 43-113 (2018) · Zbl 1407.37013
[7] Benedicks, Michael; Carleson, Lennart, The dynamics of the {H}\'{e}non map, Ann. of Math. (2). Annals of Mathematics. Second Series, 133, 73-169 (1991) · Zbl 0724.58042
[8] Berger, Pierre, Properties of the maximal entropy measure and geometry of {H}\'{e}non attractors, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 21, 2233-2299 (2019) · Zbl 1422.37017
[9] Bonatti, Christian; Crovisier, Sylvain, Center manifolds for partially hyperbolic sets without strong unstable connections, J. Inst. Math. Jussieu. Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l’Institut de Math\'{e}matiques de Jussieu, 15, 785-828 (2016) · Zbl 1362.37069
[10] Bowen, Rufus, Markov partitions for {A}xiom {\({\rm A}\)} diffeomorphisms, Amer. J. Math.. American Journal of Mathematics, 92, 725-747 (1970) · Zbl 0208.25901
[11] Bowen, Rufus, Periodic points and measures for {A}xiom {\(A\)} diffeomorphisms, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 154, 377-397 (1971) · Zbl 0212.29103
[12] Bowen, Rufus, Entropy-expansive maps, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 164, 323-331 (1972) · Zbl 0229.28011
[13] Bowen, Rufus, The equidistribution of closed geodesics, Amer. J. Math.. American Journal of Mathematics, 94, 413-423 (1972) · Zbl 0249.53033
[14] Bowen, Rufus, Maximizing entropy for a hyperbolic flow, Math. Systems Theory. Mathematical Systems Theory. An International Journal on Mathematical Computing Theory, 7, 300-303 (1974) · Zbl 0303.58014
[15] Bowen, Rufus, Equilibrium States and the Ergodic Theory of {A}nosov Diffeomorphisms, Lecture Notes in Math., 470, viii+75 pp. (2008) · Zbl 1172.37001
[16] Bowen, Rufus, Some systems with unique equilibrium states, Math. Systems Theory. Mathematical Systems Theory. An International Journal on Mathematical Computing Theory, 8, 193-202 (1974/75) · Zbl 0299.54031
[17] Boyle, Mike; Buzzi, J\'{e}r\^ome, The almost {B}orel structure of surface diffeomorphisms, {M}arkov shifts and their factors, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 19, 2739-2782 (2017) · Zbl 1377.37017
[18] Boyle, Mike; Buzzi, J\'{e}r\^ome; G\'{o}mez, Ricardo, Borel isomorphism of {SPR} {M}arkov shifts, Colloq. Math.. Colloquium Mathematicum, 137, 127-136 (2014) · Zbl 1347.37028
[19] Briend, Jean-Yves; Duval, Julien, Deux caract\'{e}risations de la mesure d’\'{e}quilibre d’un endomorphisme de {\({\rm P}^k(\bold C)\)}, Publ. Math. Inst. Hautes \'{E}tudes Sci.. Publications Math\'{e}matiques. Institut de Hautes \'{E}tudes Scientifiques, 145-159 (2001) · Zbl 1010.37004
[20] Bufetov, A. I.; Gurevich, B. M., Existence and uniqueness of a measure with maximal entropy for the {T}eichm\"{u}ller flow on the moduli space of abelian differentials, Mat. Sb.. Matematicheski\u{\i} Sbornik, 202, 3-42 (2011) · Zbl 1241.28011
[21] Burguet, David, Symbolic extensions in intermediate smoothness on surfaces, Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4). Annales Scientifiques de l’\'{E}cole Normale Sup\'{e}rieure. Quatri\`eme S\'{e}rie, 45, 337-362 (2012) · Zbl 1282.37015
[22] Burguet, David, Existence of measures of maximal entropy for {\(C^r\)} interval maps, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 142, 957-968 (2014) · Zbl 1290.37020
[23] Burguet, David, Usc/fibred entropy structure and applications, Dyn. Syst.. Dynamical Systems. An International Journal, 32, 391-409 (2017) · Zbl 1379.37009
[24] Burguet, David, Periodic expansiveness of smooth surface diffeomorphisms and applications, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 22, 413-454 (2020) · Zbl 1437.37052
[25] Burns, K.; Climenhaga, V.; Fisher, T.; Thompson, D. J., Unique equilibrium states for geodesic flows in nonpositive curvature, Geom. Funct. Anal.. Geometric and Functional Analysis, 28, 1209-1259 (2018) · Zbl 1401.37038
[26] Buzzi, J{\'{e}}r{\^o}me, Repr\'esentation markovienne des applications r\'eguli\`eres de l’intervalle (1995)
[27] Buzzi, J{\'{e}}r{\^o}me, Intrinsic ergodicity of smooth interval maps, Israel J. Math.. Israel Journal of Mathematics, 100, 125-161 (1997) · Zbl 0889.28009
[28] Buzzi, J{\'{e}}r{\^o}me, Subshifts of quasi-finite type, Invent. Math.. Inventiones Mathematicae, 159, 369-406 (2005) · Zbl 1256.37003
[29] Buzzi, J{\'{e}}r{\^o}me, Maximal entropy measures for piecewise affine surface homeomorphisms, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 29, 1723-1763 (2009) · Zbl 1186.37022
[30] Buzzi, J{\'{e}}r{\^o}me, Puzzles of quasi-finite type, zeta functions and symbolic dynamics for multi-dimensional maps, Ann. Inst. Fourier (Grenoble). Universit\'{e} de Grenoble. Annales de l’Institut Fourier, 60, 801-852 (2010) · Zbl 1207.37009
[31] Buzzi, J{\'{e}}r{\^o}me, {\(C^r\)} surface diffeomorphisms with no maximal entropy measure, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 34, 1770-1793 (2014) · Zbl 1348.37025
[32] Buzzi, J{\'{e}}r{\^o}me, The almost {B}orel structure of diffeomorphisms with some hyperbolicity. Hyperbolic Dynamics, Fluctuations and Large Deviations, Proc. Sympos. Pure Math., 89, 9-44 (2015) · Zbl 1373.37017
[33] Buzzi, J{\'{e}}r{\^o}me, The degree of {B}owen factors and injective codings of diffeomorphisms, J. Mod. Dyn.. Journal of Modern Dynamics, 16, 1-36 (2020) · Zbl 1440.37051
[34] Buzzi, J{\'{e}}r{\^o}me; Crovisier, S.; Sarig, Omri, Surface diffeomorphisms with infinitely many or no measures maximizing the entropy
[35] Buzzi, J{\'{e}}r{\^o}me; Fisher, Todd, Entropic stability beyond partial hyperbolicity, J. Mod. Dyn.. Journal of Modern Dynamics, 7, 527-552 (2013) · Zbl 1286.37028
[36] Buzzi, J{\'{e}}r{\^o}me; Fisher, Todd; Sambarino, M.; V\'{a}squez, C., Maximal entropy measures for certain partially hyperbolic, derived from {A}nosov systems, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 32, 63-79 (2012) · Zbl 1257.37023
[37] Buzzi, J{\'{e}}r{\^o}me; Ruette, Sylvie, Large entropy implies existence of a maximal entropy measure for interval maps, Discrete Contin. Dyn. Syst.. Discrete and Continuous Dynamical Systems. Series A, 14, 673-688 (2006) · Zbl 1092.37022
[38] Buzzi, J{\'{e}}r{\^o}me; Sarig, Omri, Uniqueness of equilibrium measures for countable {M}arkov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 23, 1383-1400 (2003) · Zbl 1037.37005
[39] Climenhaga, Vaughn; Fisher, Todd; Thompson, Daniel J., Unique equilibrium states for {B}onatti-{V}iana diffeomorphisms, Nonlinearity. Nonlinearity, 31, 2532-2570 (2018) · Zbl 1391.37029
[40] Climenhaga, Vaughn; Thompson, Daniel J., Intrinsic ergodicity beyond specification: {\( \beta \)}-shifts, {\(S\)}-gap shifts, and their factors, Israel J. Math.. Israel Journal of Mathematics, 192, 785-817 (2012) · Zbl 1279.37011
[41] Climenhaga, Vaughn; Thompson, Daniel J., Unique equilibrium states for flows and homeomorphisms with non-uniform structure, Adv. Math.. Advances in Mathematics, 303, 745-799 (2016) · Zbl 1366.37084
[42] Climenhaga, Vaughn; Thompson, Daniel J., Intrinsic ergodicity via obstruction entropies, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 34, 1816-1831 (2014) · Zbl 1322.37015
[43] D\'{\i}az, Lorenzo J.; Santoro, Bianca, Collision, explosion and collapse of homoclinic classes, Nonlinearity. Nonlinearity, 17, 1001-1032 (2004) · Zbl 1046.37035
[44] Downarowicz, Tomasz; Newhouse, Sheldon, Symbolic extensions and smooth dynamical systems, Invent. Math.. Inventiones Mathematicae, 160, 453-499 (2005) · Zbl 1067.37018
[45] Goodman, T. N. T., Relating topological entropy and measure entropy, Bull. London Math. Soc.. The Bulletin of the London Mathematical Society, 3, 176-180 (1971) · Zbl 0219.54037
[46] Goodwyn, L. Wayne, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 23, 679-688 (1969) · Zbl 0186.09804
[47] Gurevi\v{c}, B. M., Shift entropy and {M}arkov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR. Doklady Akademii Nauk SSSR, 192, 963-965 (1970)
[48] Hasselblatt, Boris; Wilkinson, Amie, Prevalence of non-{L}ipschitz {A}nosov foliations, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 19, 643-656 (1999) · Zbl 1069.37031
[49] Hirsch, Morris W.; Pugh, Charles C., Stable manifolds and hyperbolic sets. Global {A}nalysis, 133-163 (1970)
[50] Hochman, Michael, Isomorphism and embedding of {B}orel systems on full sets, Acta Appl. Math.. Acta Applicandae Mathematicae, 126, 187-201 (2013) · Zbl 1339.37007
[51] Hochman, Michael, Every {B}orel automorphism without finite invariant measures admits a two-set generator, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 21, 271-317 (2019) · Zbl 1415.37016
[52] Hofbauer, Franz, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. {II}, Israel J. Math.. Israel Journal of Mathematics, 38, 107-115 (1981) · Zbl 0456.28006
[53] Katok, A., Bernoulli diffeomorphisms on surfaces, Ann. of Math. (2). Annals of Mathematics. Second Series, 110, 529-547 (1979) · Zbl 0435.58021
[54] Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes \'{E}tudes Sci. Publ. Math.. Institut des Hautes \'{E}tudes Scientifiques. Publications Math\'{e}matiques, 137-173 (1980) · Zbl 0445.58015
[55] Katok, Anatole; Hasselblatt, Boris, Introduction to the Modern Theory of Dynamical Systems, Encyc. Math. Appl., 54, xviii+802 pp. (1995) · Zbl 0878.58020
[56] Kechris, Alexander S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, xviii+402 pp. (1995) · Zbl 0819.04002
[57] Ledrappier, F., Propri\'{e}t\'{e}s ergodiques des mesures de {S}ina\"{\i}, Inst. Hautes \'{E}tudes Sci. Publ. Math.. Institut des Hautes \'{E}tudes Scientifiques. Publications Math\'{e}matiques, 163-188 (1984) · Zbl 0561.58037
[58] Ledrappier, F.; Young, L.-S., The metric entropy of diffeomorphisms. {II}. {R}elations between entropy, exponents and dimension, Ann. of Math. (2). Annals of Mathematics. Second Series, 122, 540-574 (1985) · Zbl 1371.37012
[59] Ledrappier, Fran\c{c}ois; Lima, Yuri; Sarig, Omri, Ergodic properties of equilibrium measures for smooth three dimensional flows, Comment. Math. Helv.. Commentarii Mathematici Helvetici. A Journal of the Swiss Mathematical Society, 91, 65-106 (2016) · Zbl 1366.37087
[60] Ledrappier, Fran\c{c}ois; Strelcyn, Jean-Marie, A proof of the estimation from below in {P}esin’s entropy formula, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 2, 203-219 (1982) · Zbl 0533.58022
[61] Lima, Yuri; Matheus, Carlos, Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities, Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4). Annales Scientifiques de l’\'{E}cole Normale Sup\'{e}rieure. Quatri\`eme S\'{e}rie, 51, 1-38 (2018) · Zbl 1444.37011
[62] Lima, Yuri; Sarig, Omri M., Symbolic dynamics for three-dimensional flows with positive topological entropy, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 21, 199-256 (2019) · Zbl 1408.37023
[63] Ma\~{n}\'{e}, Ricardo, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat.. Boletim da Sociedade Brasileira de Matem\'{a}tica, 14, 27-43 (1983) · Zbl 0568.58028
[64] Manning, Anthony, A relation between {L}yapunov exponents, {H}ausdorff dimension and entropy, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 1, 451-459 (1981) · Zbl 0487.58011
[65] Misiurewicz, M., Diffeomorphism without any measure with maximal entropy, Bull. Acad. Polon. Sci. S\'{e}r. Sci. Math. Astronom. Phys.. Bulletin de l’Acad\'{e}mie Polonaise des Sciences. S\'{e}rie des Sciences Math\'{e}matiques, Astronomiques et Physiques, 21, 903-910 (1973) · Zbl 0272.28013
[66] Misiurewicz, Micha\l, Topological conditional entropy, Studia Math.. Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica, 55, 175-200 (1976) · Zbl 0355.54035
[67] Newhouse, Sheldon E., Hyperbolic limit sets, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 167, 125-150 (1972) · Zbl 0239.58009
[68] Newhouse, S. E., Topological entropy and {H}ausdorff dimension for area preserving diffeomorphisms of surfaces. Dynamical Systems, {V}ol. {III}—{W}arsaw, Ast\'{e}risque, 51, 323-334 (1978) · Zbl 0376.58010
[69] Newhouse, Sheldon E., Continuity properties of entropy, Ann. of Math. (2). Annals of Mathematics. Second Series, 129, 215-235 (1989) · Zbl 0676.58039
[70] Newhouse, Sheldon E., Entropy in smooth dynamical systems. Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. {I}, {II}, 1285-1294 (1991) · Zbl 0745.54005
[71] Newhouse, Sheldon{ \noopsort{E.}}, On some results of {H}ofbauer on maps of the interval. Dynamical Systems and Related Topics, Adv. Ser. Dynam. Systems, 9, 407-421 (1991)
[72] Newhouse\noopsort{XXX}, Sheldon E.; Young, Lai-Sang, Dynamics of certain skew products. Geometric Dynamics, Lecture Notes in Math., 1007, 611-629 (1983)
[73] Palis, J.; Viana, M., On the continuity of {H}ausdorff dimension and limit capacity for horseshoes. Dynamical systems, {V}alparaiso 1986, Lecture Notes in Math., 1331, 150-160 (1988)
[74] Parry, William, Intrinsic {M}arkov chains, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 112, 55-66 (1964) · Zbl 0127.35301
[75] Parry, William; Pollicott, Mark, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Ast\'{e}risque, 187-188, 268 pp. (1990) · Zbl 0726.58003
[76] Pavlov, Ronnie, On intrinsic ergodicity and weakenings of the specification property, Adv. Math.. Advances in Mathematics, 295, 250-270 (2016) · Zbl 1358.37032
[77] Pavlov, Ronnie, On controlled specification and uniqueness of the equilibrium state in expansive systems, Nonlinearity. Nonlinearity, 32, 2441-2466 (2019) · Zbl 1415.37041
[78] Pesin, Ja. B., Families of invariant manifolds that correspond to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat.. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 40, 1332-1379 (1976)
[79] Pinto, A. A.; Rand, D. A., Smoothness of holonomies for codimension 1 hyperbolic dynamics, Bull. London Math. Soc.. The Bulletin of the London Mathematical Society, 34, 341-352 (2002) · Zbl 1027.37016
[80] Rodriguez Hertz, F.; Rodriguez Hertz, M. A.; Tahzibi, A.; Ures, R., Maximizing measures for partially hyperbolic systems with compact center leaves, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 32, 825-839 (2012) · Zbl 1257.37024
[81] Rodriguez Hertz, F.; Rodriguez Hertz, M. A.; Tahzibi, A.; Ures, R., Uniqueness of {SRB} measures for transitive diffeomorphisms on surfaces, Comm. Math. Phys.. Communications in Mathematical Physics, 306, 35-49 (2011) · Zbl 1246.37011
[82] Rohlin, V. A., Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, 22, 3-56 (1967)
[83] Ruelle, David, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat.. Boletim da Sociedade Brasileira de Matem\'{a}tica, 9, 83-87 (1978) · Zbl 0432.58013
[84] Ruette, Sylvie, Transitive topological {M}arkov chains of given entropy and period with or without measure of maximal entropy, Pacific J. Math.. Pacific Journal of Mathematics, 303, 317-323 (2019) · Zbl 1439.37013
[85] Sard, Arthur, Images of critical sets, Ann. of Math. (2). Annals of Mathematics. Second Series, 68, 247-259 (1958) · Zbl 0084.05204
[86] Sarig, Omri M., Thermodynamic formalism for countable {M}arkov shifts, Ergodic Theory Dynam. Systems. Ergodic Theory and Dynamical Systems, 19, 1565-1593 (1999) · Zbl 0994.37005
[87] Sarig, Omri M., Bernoulli equilibrium states for surface diffeomorphisms, J. Mod. Dyn.. Journal of Modern Dynamics, 5, 593-608 (2011) · Zbl 1276.37025
[88] Sarig, Omri M., Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 26, 341-426 (2013) · Zbl 1280.37031
[89] Shub, Michael, Global Stability of Dynamical Systems, xii+150 pp. (1987)
[90] Sina\u{\i}, Ya. G., Gibbs measures in ergodic theory, Uspehi Mat. Nauk. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, 27, 21-64 (1972) · Zbl 0246.28008
[91] Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc.. Bulletin of the American Mathematical Society, 73, 747-817 (1967) · Zbl 0202.55202
[92] Thomsen, Klaus, On the structure of beta shifts. Algebraic and Topological Dynamics, Contemp. Math., 385, 321-332 (2005) · Zbl 1188.37012
[93] Ures, Ra\'{u}l, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 140, 1973-1985 (2012) · Zbl 1258.37033
[94] Walters, Peter, An Introduction to Ergodic Theory, Grad. Texts in Math., 79, ix+250 pp. (1982) · Zbl 0958.28011
[95] Weiss, Benjamin, Measurable dynamics. Conference in Modern Analysis and Probability, Contemp. Math., 26, 395-421 (1984) · Zbl 0599.28023
[96] Weiss, Benjamin, Countable generators in dynamics-universal minimal models. Measure and Measurable Dynamics, Contemp. Math., 94, 321-326 (1989) · Zbl 0754.28013
[97] Yoccoz, Jean-Christophe, Introduction to hyperbolic dynamics. Real and Complex Dynamical Systems, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 464, 265-291 (1995) · Zbl 0834.54023
[98] Yomdin, Y., Volume growth and entropy, Israel J. Math.. Israel Journal of Mathematics, 57, 285-300 (1987) · Zbl 0641.54036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.