Bachmann, Tom; Kong, Hana Jia; Wang, Guozhen; Xu, Zhouli The Chow \(t\)-structure on the \(\infty\)-category of motivic spectra. (English) Zbl 1489.14030 Ann. Math. (2) 195, No. 2, 707-773 (2022). The Morel-Voevodsky \(\mathbb{P}^1\)-stable \(\mathbb{A}^1\)-homotopy category \(\mathcal{SH}(k)\) of a field \(k\) offers a way to construct interesting (co)homology theories of algebraic varieties. Two theories introduced before its invention, algebraic \(K\)-theory and higher Chow groups (a.k.a. motivic cohomology) of smooth \(k\)-varieties, are representable in \(\mathcal{SH}(k)\), whereas algebraic cobordism is the prime example, due to Voevodsky, of a (co)homology theory created through its representing \(\mathbb{P}^1\)-spectrum \(\mathsf{MGL}\). It is built out of Thom spaces \(\mathrm{Th}(\gamma_k)\) of tautological bundles \(\gamma_k \to \mathrm{colim}_{n\to \infty} \mathrm{Gr}(k,n)\) on infinite Grassmann varieties and constitutes a close relative of the topological complex cobordism spectrum \(\mathrm{MU}\). Motivic stable (co)homotopy represented by the motivic sphere spectrum \(\mathbf{1}\in \mathcal{SH}(k)\) may be regarded as the “initial” example in the sense that all \(\mathbb{P}^1\)-spectra in \(\mathcal{SH}(k)\) are canonically modules over \(\mathbf{1}\).One major technique used in the very difficult (at least in these four examples) task of computing (co)homology groups for a given theory is to build a filtration on its representing \(\mathbb{P}^1\)-spectrum. If its associated graded is more accessible, the filtration leads to a spectral sequence whose initial term may be computed using algebraic means, at least in a certain range. Often the way of building a filtration applies to every \(\mathbb{P}^1\)-spectrum naturally, thus leading to a filtration on the whole homotopy category \(\mathcal{SH}(k)\). Voevodsky’s slice filtration (which leads to “the” motivic spectral sequence for algebraic \(K\)-theory on smooth \(k\)-varieties) and Morel’s homotopy \(t\)-structure are two prominent examples.This article introduces another filtration on \(\mathcal{SH}(k)\), the Chow \(t\)-structure. Its nonnegative part is the subcategory \(\mathcal{SH}(k)_{c\geq 0}\) generated under colimits and extensions by Thom spectra \(\mathrm{Th}(\xi)\) of virtual vector bundles \(\xi\in K(X)\) over smooth proper \(k\)-varieties. Theorem 3.14, the main result of this article, exhibits a close relation between the Chow \(t\)-structure and the algebraic cobordism spectrum \(\mathsf{MGL}\): If \(E\in \mathcal{SH}(k)_{c\geq 0}\), then the homotopy groups of its nonpositive truncation \(\tau_{c\leq 0}E = E_{c=0}\) can be canonically identified with Ext-groups of the \(\mathsf{MGL}\)-homology of \(E\) in the category of \(\mathrm{MU}_\ast\mathrm{MU}\)-comodules: \[ \pi_{2w-s,w}\tau_{c\leq 0}E \cong \mathrm{Ext}_{\mathrm{MU}_\ast\mathrm{MU}}^{s,2w}(\mathrm{MU}_\ast,\mathsf{MGL}_{2\ast,\ast}E) \] In this and the following results, the characteristic of \(k\) is implicitly inverted if it is positive. Taking \(E=\mathbf{1}\) the motivic sphere spectrum reproduces the \(E^2\)-term of the topological Adams-Novikov spectral sequence. Hence the Chow \(t\)-structure provides a vast generalization (to arbitrary base fields and coefficients) of work by Gheorghe, Wang, and Xu on the \(2\)-completed motivic sphere spectrum over the complex numbers [B. Gheorghe, Doc. Math. 23, 1077–1127 (2018; Zbl 1407.55007)], which in turn allowed amazing progress in classical homotopy theory: Isaksen, Wang, and Xu used it to extend the range in which the infamous stable homotopy groups of spheres are known by a factor of about \(\tfrac{3}{2}\). [D. C. Isaksen et al., Proc. Natl. Acad. Sci. USA 117, No. 40, 24757–24763 (2020; Zbl 1485.55017)].One consequence of Theorem 3.14 reconstructs the motivic Adams spectral sequence (based on motivic cohomology with \(\mathbb{Z}/p\)-coefficients) for \(\mathbb{P}^1\)-spectra \(E=E_{c=0}\) in the Chow heart in an essentially algebraic fashion. The authors provide computational evidence for the power of this approach by addressing the resulting spectral sequence for the motivic sphere spectrum \(\mathbf{1}\) over \(\mathbb{C}\), \(\mathbb{R}\), and finite fields. Reviewer: Oliver Röndigs (Osnabrück) Cited in 3 Documents MSC: 14F42 Motivic cohomology; motivic homotopy theory 18G80 Derived categories, triangulated categories 55Q45 Stable homotopy of spheres Keywords:motivic stable homotopy theory; stable homotopy groups of spheres; Adams-Novikov spectral sequence Citations:Zbl 1407.55007; Zbl 1485.55017 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Asok, Aravind; Hoyois, Marc; Wendt, Matthias, Affine representability results in {\( \Bbb A^1\)}-homotopy theory, {I}: vector bundles, Duke Math. J.. Duke Mathematical Journal, 166, 1923-1953 (2017) · Zbl 1401.14118 · doi:10.1215/00127094-0000014X [2] Aoki, Ko, The weight complex functor is symmetric monoidal, Adv. Math.. Advances in Mathematics, 368, 107145-10 (2020) · Zbl 1440.18027 · doi:10.1016/j.aim.2020.107145 [3] Bachmann, Tom, Motivic and real \'{e}tale stable homotopy theory, Compos. Math.. Compositio Mathematica, 154, 883-917 (2018) · Zbl 1496.14019 · doi:10.1112/S0010437X17007710 [4] Bachmann, Tom, Motivic {T}ambara functors, Math. Z.. Mathematische Zeitschrift, 297, 1825-1852 (2021) · Zbl 1484.14044 · doi:10.1007/s00209-020-02581-x [5] Bachmann, Tom, On the conservativity of the functor assigning to a motivic spectrum its motive, Duke Math. J.. Duke Mathematical Journal, 167, 1525-1571 (2018) · Zbl 1390.14064 · doi:10.1215/00127094-2018-0002 [6] Be{\u{\i}}linson, A. A.; Bernstein, J.; Deligne, P., Faisceaux pervers. Analysis and Topology on Singular Spaces, {I}, Ast\'{e}risque, 100, 5-171 (1982) [7] Bachmann, Tom; Hoyois, Marc, Norms in Motivic Homotopy Theory, Ast\'{e}risque, 425, 207 pp. (2021) · Zbl 1522.14028 · doi:10.24033/ast [8] Barthel, Tobias; Heard, Drew, Algebraic chromatic homotopy theory for {\(BP_*BP\)}-comodules, Proc. Lond. Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 117, 1135-1180 (2018) · Zbl 1412.55005 · doi:10.1112/plms.12158 [9] Behrens, M.; Hill, M.; Hopkins, M. J.; Mahowald, M., On the existence of a {\(v^{32}_2\)}-self map on {\(M(1,4)\)} at the prime 2, Homology Homotopy Appl.. Homology, Homotopy and Applications, 10, 45-84 (2008) · Zbl 1162.55010 · doi:10.4310/HHA.2008.v10.n3.a4 [10] Burklund, Robert; Hahn, Jeremy; Senger, Andrew, Galois reconstruction of {A}rtin–{T}ate {\( \mathbb{R} \)}-motivic spectra (2020) [11] Belmont, Eva; Isaksen, Daniel C., {\( \mathbb{R} \)}-motivic stable stems (2020) · Zbl 1479.55022 [12] Bondarko, M. V., Weight structures vs. {\(t\)}-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), J. K-Theory. Journal of K-Theory. K-Theory and its Applications in Algebra, Geometry, Analysis & Topology, 6, 387-504 (2010) · Zbl 1303.18019 · doi:10.1017/is010012005jkt083 [13] Behrens, Mark; Shah, Jay, {\(C_2\)}-equivariant stable homotopy from real motivic stable homotopy, Ann. K-Theory. Annals of K-Theory, 5, 411-464 (2020) · Zbl 1475.55011 · doi:10.2140/akt.2020.5.411 [14] {\c{S}}ega, Liana M., Homological properties of powers of the maximal ideal of a local ring, J. Algebra. Journal of Algebra, 241, 827-858 (2001) · Zbl 0998.13005 · doi:10.1006/jabr.2001.8786 [15] Dugger, Daniel; Isaksen, Daniel C., Motivic cell structures, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 5, 615-652 (2005) · Zbl 1086.55013 · doi:10.2140/agt.2005.5.615 [16] Dugger, Daniel; Isaksen, Daniel C., The motivic {A}dams spectral sequence, Geom. Topol.. Geometry & Topology, 14, 967-1014 (2010) · Zbl 1206.14041 · doi:10.2140/gt.2010.14.967 [17] Dugger, Daniel; Isaksen, Daniel C., Low-dimensional {M}ilnor-{W}itt stems over {\( \Bbb{R} \)}, Ann. K-Theory. Annals of K-Theory, 2, 175-210 (2017) · Zbl 1400.14064 · doi:10.2140/akt.2017.2.175 [18] Dold, A.; Puppe, D., Duality, trace and transfer. Topology, Trudy Mat. Inst. Steklov., 154, 81-97 (1983) [19] Elmanto, Elden; Khan, Adeel A., Perfection in motivic homotopy theory, Proc. Lond. Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 120, 28-38 (2020) · Zbl 1440.14123 · doi:10.1112/plms.12280 [20] Gheorghe, Bogdan, The motivic cofiber of {\( \tau \)}, Doc. Math.. Documenta Mathematica, 23, 1077-1127 (2018) · Zbl 0225.50011 · doi:10.4153/cjm-1971-110-9 [21] Gheorghe, Bogdan; Isaksen, Daniel C.; Krause, Achim; Ricka, Nicolas, {\( \mathbb{C} \)}-motivic modular forms, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS (2021) · Zbl 1498.14050 · doi:10.4171/JEMS/1171 [22] available on author’s website, The {A}dams–{N}ovikov spectral sequence and the homotopy groups of spheres (2007) [23] Gheorghe, Bogdan; Wang, Guozhen; Xu, Zhouli, The special fiber of the motivic deformation of the stable homotopy category is algebraic, Acta Math.. Acta Mathematica, 226, 319-407 (2021) · Zbl 1478.55006 · doi:10.4310/acta.2021.v226.n2.a2 [24] Hill, Michael A., Ext and the motivic {S}teenrod algebra over {\( \Bbb R\)}, J. Pure Appl. Algebra. Journal of Pure and Applied Algebra, 215, 715-727 (2011) · Zbl 1222.55014 · doi:10.1016/j.jpaa.2010.06.017 [25] Hu, Po; Kriz, Igor, Real-oriented homotopy theory and an analogue of the {A}dams-{N}ovikov spectral sequence, Topology. Topology. An International Journal of Mathematics, 40, 317-399 (2001) · Zbl 0967.55010 · doi:10.1016/S0040-9383(99)00065-8 [26] Hu, Po; Kriz, Igor; Ormsby, Kyle, Remarks on motivic homotopy theory over algebraically closed fields, J. K-Theory. Journal of K-Theory. K-Theory and its Applications in Algebra, Geometry, Analysis & Topology, 7, 55-89 (2011) · Zbl 1248.14026 · doi:10.1017/is010001012jkt098 [27] Hoyois, Marc; Kelly, Shane; {\O}stv{\ae}r, Paul Arne, The motivic {S}teenrod algebra in positive characteristic, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 19, 3813-3849 (2017) · Zbl 1386.14087 · doi:10.4171/JEMS/754 [28] Hovey, Mark, Homotopy theory of comodules over a {H}opf algebroid. Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic {\(K\)}-Theory, Contemp. Math., 346, 261-304 (2004) · Zbl 1067.18012 · doi:10.1090/conm/346/06291 [29] Hoyois, Marc, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 702, 173-226 (2015) · Zbl 1382.14006 · doi:10.1515/crelle-2013-0038 [30] Hoyois, Marc, The six operations in equivariant motivic homotopy theory, Adv. Math.. Advances in Mathematics, 305, 197-279 (2017) · Zbl 1400.14065 · doi:10.1016/j.aim.2016.09.031 [31] Haesemeyer, Christian; Weibel, Charles A., The Norm Residue Theorem in Motivic Cohomology, Ann. of Math. Stud., 200, xiii+299 pp. (2019) · Zbl 1433.14001 · doi:10.1515/9780691189635 [32] Isaksen, Daniel C., Stable Stems, Mem. Amer. Math. Soc., 262, viii+159 pp. (2019) · Zbl 1454.55001 · doi:10.1090/memo/1269 [33] Isaksen, Daniel C.; Wang, Guozhen; Xu, Zhouli, More stable stems (2020) [34] Isaksen, Daniel C.; Wang, Guozhen; Xu, Zhouli, Stable homotopy groups of spheres, Proc. Natl. Acad. Sci. USA. Proceedings of the National Academy of Sciences of the United States of America, 117, 24757-24763 (2020) · Zbl 1485.55017 · doi:10.1073/pnas.2012335117 [35] Krause, Achim, Periodicity in motivic homotopy theory and over {\(BP_*BP\)} (2018) [36] Kylling, Jonas Irgens, Algebraic cobordism of number fields (2019) [37] Levine, Marc, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom.. Journal of Algebraic Geometry, 10, 299-363 (2001) · Zbl 1077.14509 [38] September 2017, available on author’s webpage, Higher algebra (2017) [39] Lurie, Jacob, Higher Topos Theory, Ann. of Math. Stud., 170, xviii+925 pp. (2009) · Zbl 1175.18001 · doi:10.1515/9781400830558 [40] February 2018, available on author’s webpage, Spectral algebraic geometry (2018) [41] Levine, Marc; Yang, Yaping; Zhao, Gufang; Riou, Jo\"{e}l, Algebraic elliptic cohomology theory and flops {I}, Math. Ann.. Mathematische Annalen, 375, 1823-1855 (2019) · Zbl 1433.14015 · doi:10.1007/s00208-019-01880-x [42] Mantovani, Lorenzo, Localizations and completions of stable \(\infty \)-categories (2021) [43] Miller, Haynes Robert, Some Algebraic Aspects of the {A}dams–{N}ovikov Spectral Sequence, 103 pp. (1975) [44] Mathew, Akhil; Naumann, Niko; Noel, Justin, Nilpotence and descent in equivariant stable homotopy theory, Adv. Math.. Advances in Mathematics, 305, 994-1084 (2017) · Zbl 1420.55024 · doi:10.1016/j.aim.2016.09.027 [45] Morava, Jack, Noetherian localisations of categories of cobordism comodules, Ann. of Math. (2). Annals of Mathematics. Second Series, 121, 1-39 (1985) · Zbl 0572.55005 · doi:10.2307/1971192 [46] Morel, Fabien, {\( \Bbb A^1\)}-algebraic topology. International {C}ongress of {M}athematicians. {V}ol. {II}, 1035-1059 (2006) · Zbl 1097.14014 [47] Mazza, Carlo; Voevodsky, Vladimir; Weibel, Charles, Lecture {N}otes on {M}otivic {C}ohomology, Clay Mathematics Monographs, 2, xiv+216 pp. (2006) · Zbl 1115.14010 [48] Neeman, Amnon, Triangulated Categories, Ann. of Math. Stud., 148, viii+449 pp. (2001) · Zbl 0974.18008 · doi:10.1515/9781400837212 [49] Novikov, S. P., Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat.. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 31, 855-951 (1967) · Zbl 0176.52401 · doi:10.1070/IM1967v001n04ABEH000591 [50] Nikolaus, Thomas; Sagave, Steffen, Presentably symmetric monoidal {\( \infty \)}-categories are represented by symmetric monoidal model categories, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 17, 3189-3212 (2017) · Zbl 1380.55018 · doi:10.2140/agt.2017.17.3189 [51] Naumann, Niko; Spitzweck, Markus; {\O}stv{\ae}r, Paul Arne, Motivic {L}andweber exactness, Doc. Math.. Documenta Mathematica, 14, 551-593 (2009) · Zbl 1230.55005 [52] Nenashev, A.; Zainoulline, K., Oriented cohomology and motivic decompositions of relative cellular spaces, J. Pure Appl. Algebra. Journal of Pure and Applied Algebra, 205, 323-340 (2006) · Zbl 1101.14025 · doi:10.1016/j.jpaa.2005.06.021 [53] Pstr{\k{a}}gowski, Piotr, Synthetic spectra and the cellular motivic category (2018) [54] Quillen, Daniel, Projective modules over polynomial rings, Invent. Math.. Inventiones Mathematicae, 36, 167-171 (1976) · Zbl 0337.13011 · doi:10.1007/BF01390008 [55] Riehl, Emily, Categorical Homotopy Theory, New Math. Monogr., 24, xviii+352 pp. (2014) · Zbl 1317.18001 · doi:10.1017/CBO9781107261457 [56] Riou, Jo\"{e}l, Dualit\'{e} de {S}panier-{W}hitehead en g\'{e}om\'{e}trie alg\'{e}brique, C. R. Math. Acad. Sci. Paris. Comptes Rendus Math\'{e}matique. Acad\'{e}mie des Sciences. Paris, 340, 431-436 (2005) · Zbl 1068.14021 · doi:10.1016/j.crma.2005.02.002 [57] R\"{o}ndigs, Oliver; Spitzweck, Markus; {\O}stv{\ae}r, Paul Arne, The first stable homotopy groups of motivic spheres, Ann. of Math. (2). Annals of Mathematics. Second Series, 189, 1-74 (2019) · Zbl 1406.14018 · doi:10.4007/annals.2019.189.1.1 [58] Sechin, Pavel, Landweber-equivariant {G}rothendieck motives: a toy example of non-oriented phenomena (2020) [59] Sosnilo, Vladimir, Theorem of the heart in negative {\(K\)}-theory for weight structures, Doc. Math.. Documenta Mathematica, 24, 2137-2158 (2019) · Zbl 1441.18008 [60] Spitzweck, Markus, Relations between slices and quotients of the algebraic cobordism spectrum, Homology Homotopy Appl.. Homology, Homotopy and Applications, 12, 335-351 (2010) · Zbl 1209.14019 · doi:10.4310/HHA.2010.v12.n2.a11 [61] Spitzweck, Markus, A commutative {\( \Bbb P^1\)}-spectrum representing motivic cohomology over {D}edekind domains, M\'{e}m. Soc. Math. Fr. (N.S.). M\'{e}moires de la Soci\'{e}t\'{e} Math\'{e}matique de France. Nouvelle S\'{e}rie, 110 pp. (2018) · Zbl 1408.14081 · doi:10.24033/msmf.465 [62] Spitzweck, Markus, Algebraic cobordism in mixed characteristic, Homology Homotopy Appl.. Homology, Homotopy and Applications, 22, 91-103 (2020) · Zbl 1440.14126 · doi:10.4310/hha.2020.v22.n2.a5 [63] Schwede, Stefan; Shipley, Brooke, Stable model categories are categories of modules, Topology. Topology. An International Journal of Mathematics, 42, 103-153 (2003) · Zbl 1013.55005 · doi:10.1016/S0040-9383(02)00006-X [64] Schmidt, Johannes; Strunk, Florian, Stable {\( \Bbb A^1\)}-connectivity over {D}edekind schemes, Ann. K-Theory. Annals of K-Theory, 3, 331-367 (2018) · Zbl 1423.14158 · doi:10.2140/akt.2018.3.331 [65] {\relax The Stacks Project Authors}, Stacks Project (2018) [66] Voevodsky, Vladimir, Motivic cohomology with {\({\bf Z}/2\)}-coefficients, Publ. Math. Inst. Hautes \'{E}tudes Sci.. Publications Math\'{e}matiques. Institut de Hautes \'{E}tudes Scientifiques, 59-104 (2003) · Zbl 1057.14028 · doi:10.1007/s10240-003-0010-6 [67] Voevodsky, Vladimir, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes \'{E}tudes Sci.. Publications Math\'{e}matiques. Institut de Hautes \'{E}tudes Scientifiques, 1-57 (2003) · Zbl 1057.14027 · doi:10.1007/s10240-003-0009-z [68] Voevodsky, Vladimir, On motivic cohomology with {\( \bold Z/l\)}-coefficients, Ann. of Math. (2). Annals of Mathematics. Second Series, 174, 401-438 (2011) · Zbl 1236.14026 · doi:10.4007/annals.2011.174.1.11 [69] Wendt, Matthias, More examples of motivic cell structures (2010) · Zbl 1200.14039 [70] Wilson, Glen Matthew; {\O}stv{\ae}r, Paul Arne, Two-complete stable motivic stems over finite fields, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 17, 1059-1104 (2017) · Zbl 1361.14020 · doi:10.2140/agt.2017.17.1059 [71] Xu, Zhouli, Conference talk “{C}omputing stable homotopy groups of spheres” at {H}omotopy {T}heory: {T}ools and {A}pplications (2017) · Zbl 1376.55013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.