On the relation between Gegenbauer polynomials and the Ferrers function of the first kind. (English) Zbl 1513.33010

The authors use relations among the Gegenbauer, Jacobi, and Meixner polynomials to find properties and statements for the Ferrers function of the first and second kind that have been unknown so far. The paper includes statements about orthogonality on \([-1,1]\), some definite integral evaluations, Christoffel-Darboux formulas, expression for the Poisson kernel, and the so-called closure relations. (Closure relations are infinite series representations of the Dirac delta distribution.)


33C05 Classical hypergeometric functions, \({}_2F_1\)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
44A20 Integral transforms of special functions
Full Text: DOI arXiv


[1] Álvarez de Morales, M.; Pérez, T. E.; Piñar, M. A., Sobolev orthogonality for the Gegenbauer polynomials \(\{C_n^{-N+1/2}\}_{n\geq0}\), J. Comput. Appl. Math., 100, 111-120 (1998) · Zbl 0931.33008
[2] Askey, R.; Razban, B., An integral for Jacobi polynomials, Simon Stevin, 46, 165-169 (1972) · Zbl 0308.33006
[3] H. S. Cohl and R. S. Costas-Santos, Multi-integral representations for associated Legendre and Ferrers functions, Symmetry, 12 (2020), Paper 1528, 22 pp. · Zbl 1456.33009
[4] Cohl, H. S.; Costas-Santos, R. S.; Wakhare, T. V., On a generalization of the Rogers generating function, J. Math. Anal. Appl., 475, 1019-1043 (2019) · Zbl 1461.33007
[5] H. S. Cohl, Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 042, 26 pp. · Zbl 1270.35009
[6] H. S. Cohl, J. Park, and H. Volkmer, Gauss hypergeometric representations of the Ferrers function of the second kind, SIGMA Symmetry, Integrability Geom. Methods Appl., 17 (2021), Paper No. 053, 33 pp. · Zbl 1471.33004
[7] H. S. Cohl, A. R. P. Rau, J. E. Tohline, D. A. Browne, J. E. Cazes, and E. I. Barnes, Useful alternative to the multipole expansion of 1/r potentials, Phys. Rev. A, 64 (2001), no. 5, 052509.
[8] Durand, L.; Fishbane, P. M.; Simmons, L. M Jr., Expansion formulas and addition theorems for Gegenbauer functions, J. Math. Phys., 17, 1933-1948 (1976) · Zbl 0336.33004
[9] NIST Digital Library of Mathematical Functions, Release 1.1.4 of 2022-01-15, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds., http://dlmf.nist.gov.
[10] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Tables of integral transforms (1954), New York-Toronto-London: McGraw-Hill Book Company, Inc., New York-Toronto-London · Zbl 0055.36401
[11] M. E. H. Ismail, R. Zhang, and K. Zhou, q-fractional Askey-Wilson integrals and related semigroups of operators, arXiv:2012.07549 (2020).
[12] Koekoek, R.; Lesky, P. A.; Swarttouw, R. F., Hypergeometric Orthogonal Polynomials and their q-analogues (2010), Berlin: Springer-Verlag, Berlin · Zbl 1200.33012
[13] Maier, R. S., Algebraic generating functions for Gegenbauer polynomials, Frontiers in Orthogonal Polynomials and q-series, 425-444 (2018), Hackensack, NJ: World Sci. Publ., Hackensack, NJ · Zbl 1411.33011
[14] Simon, B., The Christoffel-Darboux kernel, Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, 295-335 (2008), Providence, RI: American Mathemtical Society, Providence, RI · Zbl 1159.42020
[15] Sánchez-Lara, J. F., On the Sobolev orthogonality of classical orthogonal polynomials for non standard parameters, Rocky Mountain J. Math., 47, 267-288 (2017) · Zbl 1360.42016
[16] R. Szmytkowski, A note on parameter derivatives of classical orthogonal polynomials, arXiv:0901.2639 (2018).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.