Rigid local systems and the multiplicative eigenvalue problem. (English) Zbl 1495.14015

A rank \(\ell\) local system of complex vector spaces on \(\mathbb{P}^1_{\mathbb{C}}\setminus S\) where \(S\) is a collection of \(s\) distinct points, is equivalent to an \(s\)-tuple of matrices in GL\((\ell,\mathbb{C})\) whose product is the identity matrix. Rank \(\ell\) local systems can then be identified with \(\ell\)-dimensional representations. Such a local system is irreducible if the corresponding representation is irreducible. It is called rigid if any other local system with the same conjugacy classes of local monodromies is isomorphic to it.
The author proposes a construction producing irreducible complex rigid local systems on \(\mathbb{P}^1_{\mathbb{C}}\setminus S\) via quantum Schubert calculus and strange duality. These local systems are unitary and arise from a study of vertices in the polytopes controlling the multiplicative eigenvalue problem for the special unitary groups SU\((n)\) (i.e., determination of the possible eigenvalues of a product of unitary matrices given the eigenvalues of the matrices). Strange duals of the simplest vertices of these polytopes are shown to give all possible unitary irreducible rigid local systems. As a consequence one obtains that the ranks of unitary irreducible rigid local systems, including those with finite global monodromy, on \(\mathbb{P}^1_{\mathbb{C}}\setminus S\) are bounded above if one fixes the cardinality \(s\) of the set \(S\) and requires the local monodromies to have orders dividing \(n\) for a fixed \(n\). The author answers a question of N. Katz by showing that there are no irreducible rigid local systems of rank greater than one, with finite global monodromy, all of whose local monodromies have orders dividing \(n\), when \(n\) is a prime number.
The author proves also that all unitary irreducible rigid local systems on \(\mathbb{P}^1_{\mathbb{C}}\setminus S\) with finite local monodromies arise as solutions to the Knizhnik-Zamolodchikov equations on conformal blocks for the special linear group and gives an inductive mechanism for determining all vertices in the multiplicative eigenvalue problem for SU\((n)\).


14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
14D20 Algebraic moduli problems, moduli of vector bundles
32G34 Moduli and deformations for ordinary differential equations (e.g., Knizhnik-Zamolodchikov equation)
14H60 Vector bundles on curves and their moduli
Full Text: DOI arXiv


[1] Agnihotri, S.; Woodward, C., Eigenvalues of products of unitary matrices and quantum {S}chubert calculus, Math. Res. Lett.. Mathematical Research Letters, 5, 817-836 (1998) · Zbl 1004.14013
[2] Belkale, Prakash, Local systems on {\( \Bbb P^1-S\)} for {\(S\)} a finite set, Compositio Math.. Compositio Mathematica, 129, 67-86 (2001) · Zbl 1042.14031
[3] Belkale, Prakash, Invariant theory of {\({\rm GL}(n)\)} and intersection theory of {G}rassmannians, Int. Math. Res. Not.. International Mathematics Research Notices, 3709-3721 (2004) · Zbl 1082.14050
[4] Belkale, Prakash, Extremal unitary local systems on {\( \Bbb P^1-\{p_1,\dots,p_s\}\)}. Algebraic Groups and Homogeneous Spaces, Tata Inst. Fund. Res. Stud. Math., 19, 37-64 (2007) · Zbl 1133.14048
[5] Belkale, Prakash, Quantum generalization of the {H}orn conjecture, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 21, 365-408 (2008) · Zbl 1134.14029
[6] Belkale, Prakash, The strange duality conjecture for generic curves, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 21, 235-258 (2008) · Zbl 1132.14028
[7] Belkale, Prakash, Strange duality and the {H}itchin/{WZW} connection, J. Differential Geom.. Journal of Differential Geometry, 82, 445-465 (2009) · Zbl 1193.14013
[8] Belkale, Prakash, Unitarity of the {KZ}/{H}itchin connection on conformal blocks in genus 0 for arbitrary {L}ie algebras, J. Math. Pures Appl. (9). Journal de Math\'{e}matiques Pures et Appliqu\'{e}es. Neuvi\`eme S\'{e}rie, 98, 367-389 (2012) · Zbl 1277.14035
[9] Belkale, Prakash, Extremal rays in the {H}ermitian eigenvalue problem, Math. Ann.. Mathematische Annalen, 373, 1103-1133 (2019) · Zbl 1416.15030
[10] Belkale, Prakash; Kiers, J., Extremal rays in the {H}ermitian eigenvalue problem for arbitrary types, Transform. Groups. Transformation Groups, 25, 667-706 (2020) · Zbl 1448.14017
[11] Belkale, Prakash; Gibney, Angela; Mukhopadhyay, Swarnava, Vanishing and identities of conformal blocks divisors, Algebr. Geom.. Algebraic Geometry, 2, 62-90 (2015) · Zbl 1322.14081
[12] Belkale, Prakash; Kumar, Shrawan, The multiplicative eigenvalue problem and deformed quantum cohomology, Adv. Math.. Advances in Mathematics, 288, 1309-1359 (2016) · Zbl 1329.81177
[13] Belkale, Prakash; Mukhopadhyay, Swarnava, Conformal blocks and cohomology in genus 0, Ann. Inst. Fourier (Grenoble). Universit\'{e} de Grenoble. Annales de l’Institut Fourier, 64, 1669-1719 (2014) · Zbl 1361.17023
[14] Bertram, Aaron, Quantum {S}chubert calculus, Adv. Math.. Advances in Mathematics, 128, 289-305 (1997) · Zbl 0945.14031
[15] Bertram, Aaron; Ciocan-Fontanine, Ionu\c{t}; Fulton, William, Quantum multiplication of {S}chur polynomials, J. Algebra. Journal of Algebra, 219, 728-746 (1999) · Zbl 0936.05086
[16] Beukers, F.; Heckman, G., Monodromy for the hypergeometric function {\(_nF_{n-1}\)}, Invent. Math.. Inventiones Mathematicae, 95, 325-354 (1989) · Zbl 0663.30044
[17] Biswas, Indranil, A criterion for the existence of a parabolic stable bundle of rank two over the projective line, Internat. J. Math.. International Journal of Mathematics, 9, 523-533 (1998) · Zbl 0939.14015
[18] Bump, Daniel, Lie Groups, Grad. Texts in Math., 225, xiv+551 pp. (2013) · Zbl 1279.22001
[19] Ciocan-Fontanine, Ionu\c{t}, The quantum cohomology ring of flag varieties, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 351, 2695-2729 (1999) · Zbl 0920.14027
[20] Dettweiler, Michael; Sabbah, Claude, Hodge theory of the middle convolution, Publ. Res. Inst. Math. Sci.. Publications of the Research Institute for Mathematical Sciences, 49, 761-800 (2013) · Zbl 1307.14015
[21] Fakhruddin, Najmuddin, Chern classes of conformal blocks. Compact Moduli Spaces and Vector Bundles, Contemp. Math., 564, 145-176 (2012) · Zbl 1244.14007
[22] Faltings, Gerd, Stable {\(G\)}-bundles and projective connections, J. Algebraic Geom.. Journal of Algebraic Geometry, 2, 507-568 (1993) · Zbl 0790.14019
[23] Fedorov, Roman, Variations of {H}odge structures for hypergeometric differential operators and parabolic {H}iggs bundles, Int. Math. Res. Not. IMRN. International Mathematics Research Notices. IMRN, 5583-5608 (2018) · Zbl 1408.32017
[24] Fulton, William, Intersection Theory, Ergeb. Math. Grenzgeb., 2, xiv+470 pp. (1998) · Zbl 0885.14002
[25] Fulton, William, Eigenvalues, invariant factors, highest weights, and {S}chubert calculus, Bull. Amer. Math. Soc. (N.S.). American Mathematical Society. Bulletin. New Series, 37, 209-249 (2000) · Zbl 0994.15021
[26] Gao, S.; Kiers, J.; Orelowitz, G.; Yong, A., The {K}ostka semigroup and its {H}ilbert basis, (2021)
[27] Gepner, Doron, Fusion rings and geometry, Comm. Math. Phys.. Communications in Mathematical Physics, 141, 381-411 (1991) · Zbl 0752.17033
[28] Giansiracusa, Noah; Gibney, Angela, The cone of type {\(A\)}, level 1, conformal blocks divisors, Adv. Math.. Advances in Mathematics, 231, 798-814 (2012) · Zbl 1316.14051
[29] Goursat, \'{E}douard, Sur les fonctions d’une variable analogues aux fonctions hyperg\'{e}om\'{e}triques, Ann. Sci. \'{E}cole Norm. Sup. (3). Annales Scientifiques de l’\'{E}cole Normale Sup\'{e}rieure. Troisi\`eme S\'{e}rie, 3, 107-136 (1886) · JFM 18.0437.01
[30] Haraoka, Yoshishige, Finite monodromy of {P}ochhammer equation, Ann. Inst. Fourier (Grenoble). Universit\'{e} de Grenoble. Annales de l’Institut Fourier, 44, 767-810 (1994) · Zbl 0812.33006
[31] Hobson, Natalie L. F., Quantum {K}ostka and the rank one problem for {\( \mathfrak{sl}_{2m} \)}, Adv. Geom.. Advances in Geometry, 19, 71-88 (2019) · Zbl 1408.14095
[32] Katz, Nicholas M., Rigid Local Systems, Ann. of Math. Stud., 139, viii+223 pp. (1996) · Zbl 0864.14013
[33] Kiers, Joshua, Extremal rays of the embedded subgroup saturation cone (2021) · Zbl 1505.14009
[34] Kiers, Joshua, On the saturation conjecture for {\({\rm Spin}(2n)\)}, Exp. Math.. Experimental Mathematics, 30, 258-267 (2021) · Zbl 1477.57034
[35] Knutson, Allen; Tao, Terence, The honeycomb model of {\({\rm GL}_n({\bf C})\)} tensor products. {I}. {P}roof of the saturation conjecture, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 12, 1055-1090 (1999) · Zbl 0944.05097
[36] Knutson, Allen; Tao, Terence; Woodward, Christopher, The honeycomb model of {\({\rm GL}_n(\Bbb C)\)} tensor products. {II}. {P}uzzles determine facets of the {L}ittlewood-{R}ichardson cone, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 17, 19-48 (2004) · Zbl 1043.05111
[37] Kostant, Bertram, A formula for the multiplicity of a weight, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 93, 53-73 (1959) · Zbl 0131.27201
[38] Laszlo, Yves, Hitchin’s and {WZW} connections are the same, J. Differential Geom.. Journal of Differential Geometry, 49, 547-576 (1998) · Zbl 0987.14027
[39] Laszlo, Yves; Sorger, Christoph, The line bundles on the moduli of parabolic {\(G\)}-bundles over curves and their sections, Ann. Sci. \'{E}cole Norm. Sup. (4). Annales Scientifiques de l’\'{E}cole Normale Sup\'{e}rieure. Quatri\`eme S\'{e}rie, 30, 499-525 (1997) · Zbl 0918.14004
[40] Laumon, G\'{e}rard, Un analogue global du c\^one nilpotent, Duke Math. J.. Duke Mathematical Journal, 57, 647-671 (1988) · Zbl 0688.14023
[41] Looijenga, E., Unitarity of {\({\rm SL}(2)\)}-conformal blocks in genus zero, J. Geom. Phys.. Journal of Geometry and Physics, 59, 654-662 (2009) · Zbl 1165.32304
[42] Malle, Gunter; Matzat, B. Heinrich, Inverse {G}alois Theory, Springer Monogr. Math., xvii+532 pp. (2018) · Zbl 1406.12001
[43] Marian, Alina; Oprea, Dragos, The level-rank duality for non-abelian theta functions, Invent. Math.. Inventiones Mathematicae, 168, 225-247 (2007) · Zbl 1117.14035
[44] Masbaum, Gregor, An element of infinite order in {TQFT}-representations of mapping class groups. Low-dimensional topology ({F}unchal, 1998), Contemp. Math., 233, 137-139 (1999) · Zbl 0929.57006
[45] Mehta, V. B.; Seshadri, C. S., Moduli of vector bundles on curves with parabolic structures, Math. Ann.. Mathematische Annalen, 248, 205-239 (1980) · Zbl 0454.14006
[46] Nakanishi, Tomoki; Tsuchiya, Akihiro, Level-rank duality of {WZW} models in conformal field theory, Comm. Math. Phys.. Communications in Mathematical Physics, 144, 351-372 (1992) · Zbl 0751.17024
[47] Orevkov, S. {\relax Yu}ri; Orevkov, {\relax Yu}ri P., The {A}gnihotri-{W}oodward-{B}elkale polytope and {K}lyachko cones, Mat. Zametki. Matematicheskie Zametki, 87, 101-107 (2010) · Zbl 1206.14080
[48] Oudompheng, R\'{e}my, Rank-level duality for conformal blocks of the linear group, J. Algebraic Geom.. Journal of Algebraic Geometry, 20, 559-597 (2011) · Zbl 1227.14019
[49] Pauly, Christian, Espaces de modules de fibr\'{e}s paraboliques et blocs conformes, Duke Math. J.. Duke Mathematical Journal, 84, 217-235 (1996) · Zbl 0877.14031
[50] Pauly, Christian, La dualit\'{e} \'{e}trange [d’apr\`es {P}. {B}elkale, {A}. {M}arian et {D}. {O}prea]. S\'{e}minaire Bourbaki. Vol. 2007/2008, Ast\'{e}risque, 363-377 (2009) · Zbl 1190.14030
[51] Popa, Mihnea, Generalized theta linear series on moduli spaces of vector bundles on curves. Handbook of Moduli. {V}ol. {III}, Adv. Lect. Math. (ALM), 26, 219-255 (2013) · Zbl 1322.14015
[52] Radchenko, Danylo; Rodriguez Villegas, Fernando, Goursat rigid local systems of rank four, Res. Math. Sci.. Research in the Mathematical Sciences, 5, 38-34 (2018) · Zbl 1420.14020
[53] Ramadas, T. R., The “{H}arder-{N}arasimhan trace” and unitarity of the {KZ}/{H}itchin connection: genus 0, Ann. of Math. (2). Annals of Mathematics. Second Series, 169, 1-39 (2009) · Zbl 1167.32011
[54] Ressayre, N., Geometric invariant theory and the generalized eigenvalue problem, Invent. Math.. Inventiones Mathematicae, 180, 389-441 (2010) · Zbl 1197.14051
[55] Schechtman, Vadim V.; Varchenko, Alexander N., Arrangements of hyperplanes and {L}ie algebra homology, Invent. Math.. Inventiones Mathematicae, 106, 139-194 (1991) · Zbl 0754.17024
[56] Schwarz, H. A., Ueber diejenigen {F}\"{a}lle, in welchen die {G}aussische hypergeometrische {R}eihe eine algebraische {F}unction ihres vierten {E}lementes darstellt, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 75, 292-335 (1873) · JFM 05.0146.03
[57] Sherman, C., Weight {S}tretching in {M}oduli of {P}arabolic {B}undles and {Q}uiver {R}epresentations (2016)
[58] Simpson, Carlos T., Products of matrices. Differential Geometry, Global Analysis, and Topology, CMS Conf. Proc., 12, 157-185 (1991) · Zbl 0756.15022
[59] Sorger, Christoph, La formule de {V}erlinde. S\'{e}minaire Bourbaki, Vol. 1994/95, Ast\'{e}risque, 794-3 (1996) · Zbl 0878.17024
[60] Lecture at AGNES, slides available on author’s website, The universal implosion and the multiplicative horn problem (2014)
[61] Swinarski, D., {\protect \upshape ConformalBlocks}: {A} {M}acaulay2 package for computing conformal block divisors (2010)
[62] Tsuchiya, Akihiro; Ueno, Kenji; Yamada, Yasuhiko, Conformal field theory on universal family of stable curves with gauge symmetries. Integrable Systems in Quantum Field Rheory and Statistical Mechanics, Adv. Stud. Pure Math., 19, 459-566 (1989) · Zbl 0696.17010
[63] Ueno, Kenji, Introduction to conformal field theory with gauge symmetries. Geometry and Physics, Lecture Notes in Pure and Appl. Math., 184, 603-745 (1997) · Zbl 0873.32022
[64] Witten, Edward, The {V}erlinde algebra and the cohomology of the {G}rassmannian. Geometry, {T}opology, & {P}hysics, Conf. Proc. Lecture Notes Geom. Topology, IV, 357-422 (1995) · Zbl 0863.53054
[65] Zelevinsky, Andrei, Littlewood-{R}ichardson semigroups. New Perspectives in Algebraic Combinatorics, Math. Sci. Res. Inst. Publ., 38, 337-345 (1999) · Zbl 0935.05094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.