## A negative answer to Ulam’s problem 19 from the Scottish Book.(English)Zbl 1529.52008

In this paper, the author answers in the negative an old problem posed by Ulam in the Scottish Book (as Problem 19), who asked if the three-dimensional (Euclidean) ball is a unique convex body $$K$$ in the three-dimensional Euclidean space that floats in equilibrium in any orientation (in water of density $$1$$) provided it is made of material of uniform density strictly between $$0$$ and $$1$$. More generally, the author proves that in each dimension $$d \geq 3$$ there exists a set $$K \subset \mathbb{R}^d$$ that is a strictly convex non-centrally-symmetric body of revolution and floats in equilibrium in every orientation at the level $$\frac{|K|}{2}$$ where $$|K|$$ denotes the $$d$$-dimensional volume. As a consequence, he obtains a result that in $$\mathbb{R}^3$$ there exists a convex body $$M$$ of density $$\frac12$$ that witnesses the failure of the Ulam’s problem mentioned above. As was shown much earlier (by R. Schneider [Enseign. Math. (2) 16, 297–305 (1971; Zbl 0209.26502)] and K. J. Falconer [Am. Math. Mon. 90, 690–693 (1983; Zbl 0529.52001)]), no such $$M$$ can be centrally symmetric. Other earlier results related with the topic of the paper are listed in the Introduction.

### MSC:

 52A38 Length, area, volume and convex sets (aspects of convex geometry) 52A20 Convex sets in $$n$$ dimensions (including convex hypersurfaces) 52A15 Convex sets in $$3$$ dimensions (including convex surfaces)

### Keywords:

convex body; floating body; Ulam’s problem

### Citations:

Zbl 0209.26502; Zbl 0529.52001
Full Text:

### References:

 [1] Auerbach, H., Sur un probl\'eme de {M. U}lam concernant l’\'equilibre des corps flottants, Studia Math., 7, 121-142 (1938) · Zbl 0018.17504 [2] Bruce, J. W.; Giblin, P. J., Curves and Singularities, xviii+321 pp. (1992) · Zbl 0770.53002 · doi:10.1017/CBO9781139172615 [3] Bracho, J.; Montejano, L.; Oliveros, D., Carousels, {Z}indler curves and the floating body problem, Period. Math. Hungar.. Periodica Mathematica Hungarica. Journal of the J\'{a}nos Bolyai Mathematical Society, 49, 9-23 (2004) · Zbl 1075.52003 · doi:10.1007/s10998-004-0519-6 [4] Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K., Unsolved Problems in Geometry. Unsolved Problems in Intuitive Mathematics, II, Problem Books in Mathematics, xvi+198 pp. (1991) · Zbl 0748.52001 · doi:10.1007/978-1-4612-0963-8 [5] de La Vall\'ee Poussin, {\relax Ch.-J}, Lecons De M\'ecanique Analytique, Vol II. (1925) [6] Falconer, K. J., Applications of a result on spherical integration to the theory of convex sets, Amer. Math. Monthly. American Mathematical Monthly, 90, 690-693 (1983) · Zbl 0529.52001 · doi:10.2307/2323535 [7] Florentin, D. I.; Sch\"utt, C.; Werner, E. M.; Zhang, N., Convex floating bodies of equilibrium (2020) · Zbl 1498.52005 [8] Gardner, Richard J., Geometric Tomography, Encyc. Math. Appl., 58, xxii+492 pp. (2006) · Zbl 1102.52002 · doi:10.1017/CBO9781107341029 [9] Gilbert, E. N., How things float, Amer. Math. Monthly. American Mathematical Monthly, 98, 201-216 (1991) · Zbl 0735.76012 · doi:10.2307/2325023 [10] Archimedes, The Works of {A}rchimedes, clxxxvi+51 pp. (2002) · Zbl 1044.01016 · doi:10.1017/CBO9781139600583.002 [11] Helgason, Sigurdur, The {R}adon Transform, Progr. in Mathematics, 5, xiv+188 pp. (1999) · Zbl 0932.43011 · doi:10.1007/978-1-4757-1463-0 [12] Hern\'{a}ndez Cifre, Mar\'{\i}a A.; Salinas, Guillermo; Segura Gomis, Salvador, Two optimization problems for convex bodies in the {$$n$$}-dimensional space, Beitr\"{a}ge Algebra Geom.. Beitr\"{a}ge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 45, 549-555 (2004) · Zbl 1074.52004 [13] Huang, Han; Slomka, Boaz A.; Werner, Elisabeth M., Ulam floating bodies, J. Lond. Math. Soc. (2). Journal of the London Mathematical Society. Second Series, 100, 425-446 (2019) · Zbl 1431.52006 · doi:10.1112/jlms.12226 [14] Lewis, E. V., Principles of Naval Architecture, Stability and Strength (1988) [15] The {S}cottish {B}ook, xvii+322 pp. (2015) · Zbl 1331.01039 · doi:10.1007/978-3-319-22897-6 [16] Nazarov, Fedor; Ryabogin, Dmitry; Zvavitch, Artem, An asymmetric convex body with maximal sections of constant volume, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 27, 43-68 (2014) · Zbl 1283.52005 · doi:10.1090/S0894-0347-2013-00777-8 [17] Olovjanischnikoff, S., Ueber eine kennzeichnende {E}igenschaft des {E}llipsoides, Uchenye Zapiski Leningrad State Univ., Math. Ser., 83(12), 114-128 (1941) · Zbl 0061.37709 [18] Ryabogin, D., On bodies floating in equilibrium in every orientation (2020) [19] Schneider, Rolf, Functional equations connected with rotations and their geometric applications, Enseign. Math. (2). L’Enseignement Math\'{e}matique. Revue Internationale. 2e S\'{e}rie, 16, 297-305 (1971) · Zbl 0209.26502 [20] Schneider, Rolf, Convex Bodies: The {B}runn-{M}inkowski {T}heory, Encycl. Math. Appl., 151, xxii+736 pp. (2014) · Zbl 1287.52001 [21] Tupper, E. C., Introduction to Naval Architecture (2013) [22] Ulam, S. M., A Collection of Mathematical Problems, Intersci. Tracts Pure Appl. Math., 8, xiii+150 pp. (1960) · Zbl 0086.24101 [23] V{\'{a}}rkonyi, P. L., Neutrally floating objects of density {$$\frac12$$} in three dimensions, Stud. Appl. Math.. Studies in Applied Mathematics, 130, 295-315 (2013) · Zbl 1316.76017 · doi:10.1111/j.1467-9590.2012.00569.x [24] V{\'{a}}rkonyi, P. L., Floating body problems in two dimensions, Stud. Appl. Math.. Studies in Applied Mathematics, 122, 195-218 (2009) · Zbl 1168.76011 · doi:10.1111/j.1467-9590.2008.00429.x [25] Weatherburn, C. E., Differential {G}eometry of {T}hree {D}imensions, Vol. I. Fourth Impression (1955) [26] Wegner, Franz, Floating bodies of equilibrium, Stud. Appl. Math.. Studies in Applied Mathematics, 111, 167-183 (2003) · Zbl 1141.76345 · doi:10.1111/1467-9590.t01-1-00231 [27] Wegner, Franz J., Floating bodies of equilibrium in {2D}, the tire track problem and electrons in a parabolic magnetic fields (2007) [28] Zalgaller, V. A., Theory of {E}nvelopes, Teoriya Ogibayushchikh. (in Russian), 104 pp. (1975) [29] Zhukovsky, N. E., Classical Mechanics (1936) [30] Zindler, Von Konrad, \"{U}ber konvexe {G}ebilde. II, Monatsh. Math. Phys.. Monatshefte f\"{u}r Mathematik und Physik, 31, 25-56 (1921) · doi:10.1007/BF01702711
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.