Hahn, Jeremy; Wilson, Dylan Redshift and multiplication for truncated Brown-Peterson spectra. (English) Zbl 1541.55010 Ann. Math. (2) 196, No. 3, 1277-1351 (2022). In the present paper, the authors prove that the algebraic \(K\)-theory of the height \(n\) truncated Brown-Peterson spectrum \(\mathrm{BP}\langle n\rangle\) has chromatic height \(n+1\). This produces the first examples of the Redshift Conjecture by Ausoni-Rognes at arbitrary chromatic heights [J. Rognes, Oberwolfach Rep. TB-2000-39, page 9, https://doi.org/10.14760/TB-2000-39 (2000) and “Algebraic \(K\)-theory of finitely presented ring spectra”, https://www.mn.uio.no/math/personer/vit/rognes/papers/red-shift.pdf].In the chromatic picture of homotopy theory, the category of spectra \(\mathsf{Sp}\) is filtered by the height of \(1\)-dimensional formal group schemes. More precisely, Quillen’s theorem implies that the complex cobordism \(\mathrm{MU}\)-homology of a spectrum can be identified with an element in the derived category of the quasi-coherent sheaves on the moduli stack of formal groups. Under this correspondence, elements on the \(E_2\)-page of the \(\mathrm{MU}\)-based Adams spectral sequence (Adams-Novikov spectral sequence) are organized into families of different periodicities (wavelengths), corresponding to heights of formal groups – hence the name chromatic homotopy theory. For example, discrete rings (when identified with their Eilenberg-MacLane spectra), topological \(K\)-theory, and topological modular forms have heights \(0\), \(1\), and \(2\), respectively.Localized at a prime \(p\), the spectrum \(\mathrm{MU}\) splits as a wedge sum of suspensions of the Brown-Peterson spectrum \(\mathrm{BP}\). The truncated Brown-Peterson spectrum \(\mathrm{BP}\langle n\rangle\) of height \(n\) is obtained by eliminating polynomial generators corresponding to heights greater than \(n\) from \(\mathrm{BP}_*=\mathbb{Z}_{(p)}[v_1,v_2,\dots]\). While \(\mathrm{MU}\) is an \(\mathbb{E}_\infty\)-ring spectrum, the existence of multiplicative structures on \(\mathrm{BP}\) and its truncations \(\mathrm{BP}\langle n\rangle\) is a very subtle question. The spectrum \(\mathrm{BP}\) is known to have a unique \(\mathbb{E}_4\)-ring structure by [M. Basterra and M. A. Mandell, J. Topol. 6, No. 2, 285–310 (2013; Zbl 1317.55005)] and its truncation \(\mathrm{BP}\langle n\rangle\) was only previously known to admit an \(\mathbb{E}_1\)-ring structure for a general height \(n\) by [A. Lazarev, \(K\)-Theory 24, No. 3, 243–281 (2001; Zbl 1008.55007); A. Baker and A. Jeanneret, Homology Homotopy Appl. 4, No. 1, 163–173 (2002; Zbl 1380.55009); V. Angeltveit, Geom. Topol. 12, No. 2, 987–1032 (2008; Zbl 1149.55006)]. At height \(1\), \(\mathrm{BP}\langle1\rangle\) admits an \(\mathbb{E}_\infty\)-ring structure at all primes since it is the Adams summand of \(p\)-local connective topological \(K\)-theory. At height \(2\), \(\mathrm{BP}\langle2\rangle\) has been equipped with an \(\mathbb{E}_\infty\)-ring structure at \(p=3\) by [M. Hill and T. Lawson, Adv. Math. 225, No. 2, 1013–1045 (2010; Zbl 1220.55006)] and at \(p=2\) by [T. Lawson and N. Naumann, J. Topol. 5, No. 1, 137–168 (2012; Zbl 1280.55007)]. However, \(\mathrm{BP}\) and \(\mathrm{BP}\langle n\rangle\) for any \(n\ge 4\) have no \(\mathbb{E}_{2(p^2+2)}\)-ring structure at \(p=2\) by [T. Lawson, Ann. Math. (2) 188, No. 2, 513–576 (2018; Zbl 1431.55011)] and at odd primes by [A. Senger, “The Brown-Peterson spectrum is not \(\mathbb{E}_{2(p^2+2)}\) at odd primes”, Preprint, arXiv:1710.09822].The chromatic Redshift Conjecture predicts that the chromatic height of a ring spectrum increases by exactly \(1\) under algebraic \(K\)-theory, with the periodicities (wavelengths) of elements in the homotopy groups lengthening as the height increases. This is why the conjecture is named “redshift”.At chromatic height \(0\), the redshift phenomenon is essentially the celebrated Lichtenbaum-Quillen Conjecture, proved by Rost-Voevodsky in [V. Voevodsky, Publ. Math., Inst. Hautes Étud. Sci. 98, 59–104 (2003; Zbl 1057.14028); Ann. Math. (2) 174, No. 1, 401–438 (2011; Zbl 1236.14026)]. It states that algebraic \(K\)-theory spectra of discrete rings are equivalent to their height \(1\) Bousfield localizations after taking high enough connective covers. At chromatic height \(1\), Ausoni-Rognes computed the mod \((p,v_1)\) algebraic \(K\)-theory of the Adams summand \(\ell^\wedge_p\) of \(p\)-adic topological \(K\)-theory at primes \(p\ge 5\) in [C. Ausoni and J. Rognes, Acta Math. 188, No. 1, 1–39 (2002; Zbl 1019.18008)]. Like the height \(0\) case, their computation implies that the height \(2\) Bousfield localization \(\mathrm{K}(\ell^\wedge_p)_{(p)}\to L_{2}^f\mathrm{K}(\ell^\wedge_p)_{(p)}\) is a \(\pi_*\)-isomorphism for \(*\gg 0\). In recent years, the Redshift Conjecture has been verified for more height \(1\) spectra in [A. J. Blumberg and M. A. Mandell, Acta Math. 200, No. 2, 155–179 (2008; Zbl 1149.18008); C. Ausoni, Invent. Math. 180, No. 3, 611–668 (2010; Zbl 1204.19002); C. Ausoni and J. Rognes, J. Eur. Math. Soc. (JEMS) 14, No. 4, 1041–1079 (2012; Zbl 1253.19001)]. Since the present paper, the Redshift Conjecture has been proved for \(\mathbb{E}_\infty\)-ring spectra by the works of [M. Land et al., “Purity in chromatically localized algebraic \(K\)-theory”, Preprint, arXiv:2001.10425; D. Clausen et al., “Descent and vanishing in chromatic algebraic \(K\)-theory via group actions”, Preprint, arXiv:2011.08233; A. Yuan, “Examples of chromatic redshift in algebraic \(K\)-theory”, Preprint, arXiv:2111.10837; R. Burklund et al., “The Chromatic Nullstellensatz”, Preprint, arXiv:2207.09929].In the current paper, the authors first construct models of \(\mathrm{BP}\langle n\rangle\) as \(\mathbb{E}_3\)-\(\mathrm{BP}\)-algebras at an arbitrary height \(n\). It is with this particular model that the authors prove the Redshift Conjecture for \(\mathrm{BP}\langle n\rangle\), i.e., its algebraic \(K\)-theory spectrum has chromatic height \(n+1\), in the sense of fp-type of [M. Mahowald and C. Rezk, Am. J. Math. 121, No. 6, 1153–1177 (1999; Zbl 0942.55012)]. As a consequence, they establish a higher height analog of the Lichtenbaum-Quillen Conjecture showing that both maps \[ \mathrm{K}(\mathrm{BP}\langle n\rangle^\wedge_p)_{(p)}\longrightarrow L_{n+1}^f\mathrm{K}(\mathrm{BP}\langle n\rangle^\wedge_p)_{(p)},\qquad \mathrm{K}(\mathrm{BP}\langle n\rangle)_{(p)}\longrightarrow L_{n+1}^f\mathrm{K}(\mathrm{BP}\langle n\rangle)_{(p)} \] are equivalences after taking high enough connective covers.To access \(\mathrm{K}(\mathrm{BP}\langle n\rangle)\), the authors use the trace method of Dundas-Goodwillie-McCarthy [B. I. Dundas et al., The local structure of algebraic K-theory. London: Springer (2013; Zbl 1272.55002)]. This relates algebraic \(\mathrm{K}\)-theory with the more computable topological cyclic homology \(\mathrm{TC}\), reducing the problem to proving \(\pi_*(F\wedge\mathrm{TC}(\mathrm{BP}\langle n\rangle))\) is bounded above for some finite complex \(F\) of type \(n+2\). By [T. Nikolaus and P. Scholze, Acta Math. 221, No. 2, 203–409 (2018; Zbl 1457.19007)], \(\mathrm{TC}\) is constructed from topological Hochschild homology \(\mathrm{THH}\) together with a cyclotomic Frobenius map and an \(S^1\)-action. The authors prove a Segal Conjecture for the cyclotomic Frobenius map and a canonical vanishing result for the \(S^1\)-action on \(\mathrm{THH}(\mathrm{BP}\langle n\rangle)\) after smashing with a finite complex of type \(n+2\). The two results collectively establish the Redshift Conjecture for \(\mathrm{BP}\langle n\rangle\). Reviewer: Ningchuan Zhang (Bloomington) Cited in 11 Documents MSC: 55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.) 19D55 \(K\)-theory and homology; cyclic homology and cohomology 18N70 \(\infty\)-operads and higher algebra Keywords:topological Hochschild homology; topological cyclic homology; redshift; \(K\)-theory; Lichtenbaum-Quillen conjecture; truncated Brown-Peterson spectrum Citations:Zbl 1317.55005; Zbl 1008.55007; Zbl 1380.55009; Zbl 1149.55006; Zbl 1220.55006; Zbl 1280.55007; Zbl 1431.55011; Zbl 1057.14028; Zbl 1236.14026; Zbl 1019.18008; Zbl 1149.18008; Zbl 1204.19002; Zbl 1253.19001; Zbl 0942.55012; Zbl 1272.55002; Zbl 1457.19007 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Adams, J. F., A periodicity theorem in homological algebra, Proc. Cambridge Philos. Soc.. Proceedings of the Cambridge Philosophical Society, 62, 365-377 (1966) · Zbl 0163.01602 · doi:10.1017/s0305004100039955 [2] Adams, J. F.; Gunawardena, J. H.; Miller, H., The {S}egal conjecture for elementary abelian {\(p\)}-groups, Topology. Topology. An International Journal of Mathematics, 24, 435-460 (1985) · Zbl 0611.55010 · doi:10.1016/0040-9383(85)90014-X [3] Angelini-Knoll, Gabriel, Detecting {\( \beta \)} elements in iterated algebraic {K}-theory (2021) [4] Angelini-Knoll, Gabriel; Quigley, J. D., The {S}egal conjecture for topological {H}ochschild homology of {R}avenel spectra, J. Homotopy Relat. Struct.. Journal of Homotopy and Related Structures, 16, 41-60 (2021) · Zbl 1467.55007 · doi:10.1007/s40062-021-00275-7 [5] Angelini-Knoll, Gabriel; Salch, Andrew, A {M}ay-type spectral sequence for higher topological {H}ochschild homology, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 18, 2593-2660 (2018) · Zbl 1410.18016 · doi:10.2140/agt.2018.18.2593 [6] Angelini-Knoll, Gabriel; Quigley,J. D., Chromatic complexity of the algebraic {K}-theory of \(y(n) (2021)\) [7] Angeltveit, Vigleik, Topological {H}ochschild homology and cohomology of {\(A_\infty \)} ring spectra, Geom. Topol.. Geometry & Topology, 12, 987-1032 (2008) · Zbl 1149.55006 · doi:10.2140/gt.2008.12.987 [8] Angeltveit, Vigleik; Hill, Michael A.; Lawson, Tyler, Topological {H}ochschild homology of {\( \ell \)} and {\(k_o\)}, Amer. J. Math.. American Journal of Mathematics, 132, 297-330 (2010) · Zbl 1271.55009 · doi:10.1353/ajm.0.0105 [9] Angeltveit, Vigleik; Lind, John A., Uniqueness of {\(BP \langle n\rangle \)}, J. Homotopy Relat. Struct.. Journal of Homotopy and Related Structures, 12, 17-30 (2017) · Zbl 1379.55007 · doi:10.1007/s40062-015-0120-0 [10] Angeltveit, Vigleik; Rognes, John, Hopf algebra structure on topological {H}ochschild homology, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 5, 1223-1290 (2005) · Zbl 1087.55009 · doi:10.2140/agt.2005.5.1223 [11] Antieau, Benjamin; Mathew, A.; Morrow, M.; Nikolaus, T., On the {B}eilinson fiber square (2021) [12] Antieau, Benjamin; Nikolaus, Thomas, Cartier modules and cyclotomic spectra, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 34, 1-78 (2021) · Zbl 1467.14058 · doi:10.1090/jams/951 [13] Ausoni, Christian, Topological {H}ochschild homology of connective complex {\(K\)}-theory, Amer. J. Math.. American Journal of Mathematics, 127, 1261-1313 (2005) · Zbl 1107.55006 · doi:10.1353/ajm.2005.0036 [14] Ausoni, Christian, On the algebraic {\({K}\)}-theory of the complex {\({K}\)}-theory spectrum, Invent. Math.. Inventiones Mathematicae, 180, 611-668 (2010) · Zbl 1204.19002 · doi:10.1007/s00222-010-0239-x [15] Ausoni, Christian; Richter, Birgit, Towards topological {H}ochschild homology of {J}ohnson-{W}ilson spectra, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 20, 375-393 (2020) · Zbl 1437.55009 · doi:10.2140/agt.2020.20.375 [16] Ausoni, Christian; Rognes, John, Algebraic {\( \text{K} \)}-theory of topological {\( \text{K} \)}-theory, Acta Math.. Acta Mathematica, 188, 1-39 (2002) · Zbl 1019.18008 · doi:10.1007/BF02392794 [17] Ausoni, Christian; Rognes, John, Algebraic {\(K\)}-theory of the first {M}orava {\(K\)}-theory, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 14, 1041-1079 (2012) · Zbl 1253.19001 · doi:10.4171/JEMS/326 [18] Ausoni, Christian; Rognes, John, Rational algebraic {\(K\)}-theory of topological {\(K\)}-theory, Geom. Topol.. Geometry & Topology, 16, 2037-2065 (2012) · Zbl 1260.19004 · doi:10.2140/gt.2012.16.2037 [19] Ayala, David; Francis, John, Factorization homology of topological manifolds, J. Topol.. Journal of Topology, 8, 1045-1084 (2015) · Zbl 1350.55009 · doi:10.1112/jtopol/jtv028 [20] Baas, Nils A.; Dundas, Bj{\o}rn Ian; Rognes, John, Two-vector bundles and forms of elliptic cohomology. Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., 308, 18-45 (2004) · Zbl 1106.55004 · doi:10.1017/CBO9780511526398.005 [21] Baker, Andrew; Jeanneret, Alain, Brave new {H}opf algebroids and extensions of {\(M}{U\)}-algebras, Homology Homotopy Appl.. Homology, Homotopy and Applications, 4, 163-173 (2002) · Zbl 1380.55009 · doi:10.4310/hha.2002.v4.n1.a9 [22] Basterra, Maria; Mandell, Michael A., The multiplication on {BP}, J. Topol.. Journal of Topology, 6, 285-310 (2013) · Zbl 1317.55005 · doi:10.1112/jtopol/jts032 [23] Blumberg, Andrew J.; Cohen, Ralph L.; Schlichtkrull, Christian, Topological {H}ochschild homology of {T}hom spectra and the free loop space, Geom. Topol.. Geometry & Topology, 14, 1165-1242 (2010) · Zbl 1219.19006 · doi:10.2140/gt.2010.14.1165 [24] Blumberg, Andrew J.; Gepner, David; Tabuada, Gon\c{c}alo, Uniqueness of the multiplicative cyclotomic trace, Adv. Math.. Advances in Mathematics, 260, 191-232 (2014) · Zbl 1297.19002 · doi:10.1016/j.aim.2014.02.004 [25] Blumberg, Andrew J.; Mandell, Michael A., The localization sequence for the algebraic {\(K\)}-theory of topological {\(K\)}-theory, Acta Math.. Acta Mathematica, 200, 155-179 (2008) · Zbl 1149.18008 · doi:10.1007/s11511-008-0025-4 [26] Boardman, J. Michael, Conditionally convergent spectral sequences. Homotopy Invariant Algebraic Structures, Contemp. Math., 239, 49-84 (1999) · Zbl 0947.55020 · doi:10.1090/conm/239/03597 [27] B\"{o}kstedt, M.; Madsen, I., Topological cyclic homology of the integers. \( \text{K} \)-Theory, Ast\'{e}risque, 226, 57-143 (1994) · Zbl 0816.19001 [28] Bousfield, A. K., The localization of spectra with respect to homology, Topology. Topology. An International Journal of Mathematics, 18, 257-281 (1979) · Zbl 0417.55007 · doi:10.1016/0040-9383(79)90018-1 [29] Bruner, R. R.; May, J. P.; McClure, J. E.; Steinberger, M., {\(H_\infty \)} Ring Spectra and their Applications, Lecture Notes in Math., 1176, viii+388 pp. (1986) · Zbl 0585.55016 · doi:10.1007/BFb0075405 [30] Burklund, R.; Hahn, J.; Senger, A., Galois reconstruction of {A}rtin-{T}ate \(\mathbb{R} \)-motivic spectra (2020) [31] Carmeli, Shachar; Schlank, Tomer M.; Yanovski, Lior, Ambidexterity and height, Adv. Math.. Advances in Mathematics, 385, 107763-90 (2021) · Zbl 1466.18014 · doi:10.1016/j.aim.2021.107763 [32] Clausen, D.; Mathew, A.; Naumann, N.; Noel, J., Descent and vanishing in chromatic algebraic {\(K\)}-theory via group actions (2020) [33] Deligne, Pierre, Th\'{e}orie de {H}odge. {II}, Inst. Hautes \'{E}tudes Sci. Publ. Math.. Institut des Hautes \'{E}tudes Scientifiques. Publications Math\'{e}matiques, 5-57 (1971) · Zbl 0219.14007 [34] Dundas, Bj{\o}rn Ian; Goodwillie, Thomas G.; McCarthy, Randy, The Local Structure of Algebraic {\( \text{K} \)}-Theory, Algebra Appl., 18, xvi+435 pp. (2013) · Zbl 1272.55002 · doi:10.1007/978-1-4471-4393-2 [35] Galatius, S.; Kupers, A.; Randal-Williams, O., Cellular {\(E_k\)}-algebras (2021) [36] Glasman, S.; Lawson, T., {S}table power operations (2020) [37] Greenlees, J. P. C.; May, J. P., Generalized {T}ate cohomology, Mem. Amer. Math. Soc.. Memoirs of the American Mathematical Society, 113, viii+178 pp. (1995) · Zbl 0876.55003 · doi:10.1090/memo/0543 [38] Harpaz, Yonatan; Nuiten, Joost; Prasma, Matan, Tangent categories of algebras over operads, Israel J. Math.. Israel Journal of Mathematics, 234, 691-742 (2019) · Zbl 1435.55010 · doi:10.1007/s11856-019-1933-z [39] Hedenlund, A. P., Multiplicative {T}ate spectral sequences (2020) [40] Hesselholt, Lars, Topological {H}ochschild homology and the {H}asse-{W}eil zeta function. An Alpine Bouquet of Algebraic Topology, Contemp. Math., 708, 157-180 (2018) · Zbl 1402.19002 · doi:10.1090/conm/708/14264 [41] Hesselholt, Lars; Madsen, Ib, On the {\(K\)}-theory of local fields, Ann. of Math. (2). Annals of Mathematics. Second Series, 158, 1-113 (2003) · Zbl 1033.19002 · doi:10.4007/annals.2003.158.1 [42] Hesselholt, Lars; Madsen, Ib, On the de {R}ham-{W}itt complex in mixed characteristic, Ann. Sci. \'{E}cole Norm. Sup. (4). Annales Scientifiques de l’\'{E}cole Normale Sup\'{e}rieure. Quatri\`{e}me S\'{e}rie, 37, 1-43 (2004) · Zbl 1062.19003 · doi:10.1016/j.ansens.2003.06.001 [43] Hill, Michael; Lawson, Tyler, Automorphic forms and cohomology theories on {S}himura curves of small discriminant, Adv. Math.. Advances in Mathematics, 225, 1013-1045 (2010) · Zbl 1220.55006 · doi:10.1016/j.aim.2010.03.009 [44] Hopkins, M. J.; Palmieri, J. H.; Smith, J. H., Vanishing lines in generalized {A}dams spectral sequences are generic, Geom. Topol.. Geometry and Topology, 3, 155-165 (1999) · Zbl 0920.55020 · doi:10.2140/gt.1999.3.155 [45] Hopkins, Michael J.; Smith, Jeffrey H., Nilpotence and stable homotopy theory. {II}, Ann. of Math. (2). Annals of Mathematics. Second Series, 148, 1-49 (1998) · Zbl 0924.55010 · doi:10.2307/120991 [46] Hovey, Mark, Bousfield localization functors and {H}opkins’ chromatic splitting conjecture. The {\v{C}}ech Centennial, Contemp. Math., 181, 225-250 (1995) · Zbl 0830.55004 · doi:10.1090/conm/181/02036 [47] Hovey, Mark A., {\(v_n\)}-elements in ring spectra and applications to bordism theory, Duke Math. J.. Duke Mathematical Journal, 88, 327-356 (1997) · Zbl 0880.55006 · doi:10.1215/S0012-7094-97-08813-X [48] Kitchloo, Nitu; Lorman, Vitaly; Wilson, W. Stephen, Multiplicative structure on real {J}ohnson-{W}ilson theory. New {D}irections in {H}omotopy {T}heory, Contemp. Math., 707, 31-44 (2018) · Zbl 1404.55015 · doi:10.1090/conm/707/14252 [49] Kochman, Stanley O., Homology of the classical groups over the {D}yer-{L}ashof algebra, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 185, 83-136 (1973) · Zbl 0271.57013 · doi:10.2307/1996429 [50] Land, M.; Mathew, A.; Meier, L.; Tamme, G., Purity in chromatically localized algebraic {\(K\)}-theory (2022) [51] Lawson, Tyler, Secondary power operations and the {B}rown-{P}eterson spectrum at the prime 2, Ann. of Math. (2). Annals of Mathematics. Second Series, 188, 513-576 (2018) · Zbl 1431.55011 · doi:10.4007/annals.2018.188.2.3 [52] Lawson, Tyler; Naumann, Niko, Commutativity conditions for truncated {B}rown-{P}eterson spectra of height 2, J. Topol.. Journal of Topology, 5, 137-168 (2012) · Zbl 1280.55007 · doi:10.1112/jtopol/jtr030 [53] Lazarev, A., Homotopy theory of {\(A_\infty \)} ring spectra and applications to {\(MU\)}-modules, \(K\)-Theory. \(K\)-Theory. An Interdisciplinary Journal for the Development, Application, and Influence of \(K\)-Theory in the Mathematical Sciences, 24, 243-281 (2001) · Zbl 1008.55007 · doi:10.1023/A:1013394125552 [54] Lin, Wen Hsiung, On conjectures of {M}ahowald, {S}egal and {S}ullivan, Math. Proc. Cambridge Philos. Soc.. Mathematical Proceedings of the Cambridge Philosophical Society, 87, 449-458 (1980) · Zbl 0455.55007 · doi:10.1017/S0305004100056887 [55] Liulevicius, Arunas, Zeroes of the cohomology of the {S}teenrod algebra, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 14, 972-976 (1963) · Zbl 0148.17102 · doi:10.2307/2035037 [56] Lun{\o}e-Nielsen, Sverre, The {S}egal conjecture for topological {H}ochschild homology of commutative {\(S\)}-algebras (2005) [57] Lun{\o}e-Nielsen, Sverre; Rognes, John, The {S}egal conjecture for topological {H}ochschild homology of complex cobordism, J. Topol.. Journal of Topology, 4, 591-622 (2011) · Zbl 1229.55006 · doi:10.1112/jtopol/jtr015 [58] available on author’s webpage, Rotation invariance in algebraic {\(K\)}-theory (2015) [59] available on author’s webpage, Higher algebra (2017) [60] available on author’s webpage, Spectral Algebraic Geometry (2018) [61] Mahowald, Mark; Rezk, Charles, Brown-{C}omenetz duality and the {A}dams spectral sequence, Amer. J. Math.. American Journal of Mathematics, 121, 1153-1177 (1999) · Zbl 0942.55012 · doi:10.1353/ajm.1999.0043 [62] Mathew, Akhil, Examples of descent up to nilpotence. Geometric and {T}opological {A}spects of the {R}epresentation {T}heory of {F}inite {G}roups, Springer Proc. Math. Stat., 242, 269-311 (2018) · Zbl 07907788 · doi:10.1007/978-3-319-94033-5_11 [63] Mathew, Akhil, On {\(K(1)\)}-local {TR}, Compos. Math.. Compositio Mathematica, 157, 1079-1119 (2021) · Zbl 1471.19002 · doi:10.1112/S0010437X21007144 [64] Mathew, Akhil; Naumann, Niko; Noel, Justin, On a nilpotence conjecture of {J}. {P}. {M}ay, J. Topol.. Journal of Topology, 8, 917-932 (2015) · Zbl 1335.55009 · doi:10.1112/jtopol/jtv021 [65] Mathew, Akhil; Naumann, Niko; Noel, Justin, Nilpotence and descent in equivariant stable homotopy theory, Adv. Math.. Advances in Mathematics, 305, 994-1084 (2017) · Zbl 1420.55024 · doi:10.1016/j.aim.2016.09.027 [66] May, J. P., Problems in infinite loop space theory. Conference on {H}omotopy {T}heory ({E}vanston, {I}ll., 1974), Notas Mat. Simpos., 1, 111-125 (1975) · Zbl 0332.55007 [67] Miller, Haynes; Wilkerson, Clarence, Vanishing lines for modules over the {S}teenrod algebra, J. Pure Appl. Algebra. Journal of Pure and Applied Algebra, 22, 293-307 (1981) · Zbl 0469.55012 · doi:10.1016/0022-4049(81)90104-3 [68] Milnor, John, The {S}teenrod algebra and its dual, Ann. of Math. (2). Annals of Mathematics. Second Series, 67, 150-171 (1958) · Zbl 0080.38003 · doi:10.2307/1969932 [69] Mitchell, S. A., The {M}orava {\(K\)}-theory of algebraic {\(K\)}-theory spectra, \(K\)-Theory. \(K\)-Theory. An Interdisciplinary Journal for the Development, Application, and Influence of \(K\)-Theory in the Mathematical Sciences, 3, 607-626 (1990) · Zbl 0709.55011 · doi:10.1007/BF01054453 [70] Morava, Jack, Forms of {\(K\)}-theory, Math. Z.. Mathematische Zeitschrift, 201, 401-428 (1989) · Zbl 0709.55003 · doi:10.1007/BF01214905 [71] Nave, Lee S., The {S}mith-{T}oda complex {\(V((p+1)/2)\)} does not exist, Ann. of Math. (2). Annals of Mathematics. Second Series, 171, 491-509 (2010) · Zbl 1194.55017 · doi:10.4007/annals.2010.171.491 [72] Nikolaus, Thomas; Scholze, Peter, On topological cyclic homology, Acta Math.. Acta Mathematica, 221, 203-409 (2018) · Zbl 1457.19007 · doi:10.4310/ACTA.2018.v221.n2.a1 [73] Quillen, Daniel, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc.. Bulletin of the American Mathematical Society, 75, 1293-1298 (1969) · Zbl 0199.26705 · doi:10.1090/S0002-9904-1969-12401-8 [74] Quillen, Daniel, Higher algebraic {\( \text{K} \)}-theory. Proceedings of the {I}nternational {C}ongress of {M}athematicians, {V}ol. 1, 171-176 (1975) · Zbl 0359.18014 [75] Ravenel, Douglas C., Complex Cobordism and Stable Homotopy Groups of Spheres, Pure Appl. Math., 121, xx+413 pp. (1986) · Zbl 0608.55001 [76] Ravenel, Douglas C., Nilpotence and {P}eriodicity in {S}table {H}omotopy {T}heory, Annals of Mathematics Studies, 128, xiv+209 pp. (1992) · Zbl 0774.55001 · doi:10.1515/9781400882489 [77] Richter, Birgit, A lower bound for coherences on the {B}rown-{P}eterson spectrum, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 6, 287-308 (2006) · Zbl 1095.55005 · doi:10.2140/agt.2006.6.287 [78] Rognes, John, Algebraic {\(K\)}-theory of the two-adic integers, J. Pure Appl. Algebra. Journal of Pure and Applied Algebra, 134, 287-326 (1999) · Zbl 0929.19004 · doi:10.1016/S0022-4049(97)00156-4 [79] Available on author’s webpage, Algebraic {K}-theory of finitely presented ring spectra (2000) [80] Rognes, John, Chromatic redshift (2014) [81] Senger, A., The {B}rown-{P}eterson spectrum is not \({E}_{2(p^2+2)}\) at odd primes (2022) [82] Strickland, N. P., Products on {\(MU\)}-modules, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 351, 2569-2606 (1999) · Zbl 0924.55005 · doi:10.1090/S0002-9947-99-02436-8 [83] Thomason, R. W., The {L}ichtenbaum-{Q}uillen conjecture for {\(K/\ell_\ast[\beta^{-1}]\)}. Current {T}rends in {A}lgebraic {T}opology, {P}art 1 ({L}ondon, {O}nt., 1981), CMS Conf. Proc., 2, 117-139 (1982) · Zbl 0563.14009 [84] Tilson, S., Power operations in the {K}{\"u}nneth spectral sequence and commutative {\( \text{H}\mathbb{F}_p\)}-algebras (2018) [85] Veen, Torleif, Detecting periodic elements in higher topological {H}ochschild homology, Geom. Topol.. Geometry & Topology, 22, 693-756 (2018) · Zbl 1384.55007 · doi:10.2140/gt.2018.22.693 [86] Voevodsky, Vladimir, Motivic cohomology with {\({\bf Z}/2\)}-coefficients, Publ. Math. Inst. Hautes \'{E}tudes Sci.. Publications Math\'{e}matiques. Institut de Hautes \'{E}tudes Scientifiques, 59-104 (2003) · Zbl 1057.14028 · doi:10.1007/s10240-003-0010-6 [87] Voevodsky, Vladimir, On motivic cohomology with {\( \bold Z/l\)}-coefficients, Ann. of Math. (2). Annals of Mathematics. Second Series, 174, 401-438 (2011) · Zbl 1236.14026 · doi:10.4007/annals.2011.174.1.11 [88] Waldhausen, Friedhelm, Algebraic {\( \text{K} \)}-theory of spaces, localization, and the chromatic filtration of stable homotopy. Algebraic Topology, Lecture Notes in Math., 1051, 173-195 (1984) · Zbl 0562.55002 · doi:10.1007/BFb0075567 [89] Westerland, Craig, A higher chromatic analogue of the image of {\(J\)}, Geom. Topol.. Geometry & Topology, 21, 1033-1093 (2017) · Zbl 1371.19003 · doi:10.2140/gt.2017.21.1033 [90] Wilson, W. Stephen, The {\( \Omega \)}-spectrum for {B}rown-{P}eterson cohomology. {II}, Amer. J. Math.. American Journal of Mathematics, 97, 101-123 (1975) · Zbl 0303.55003 · doi:10.2307/2373662 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.