×

On the Brumer-Stark conjecture. (English) Zbl 1525.11128

L. Stickelberger [Math. Ann. 37, 321–367 (1890; JFM 22.0100.01)] computed the ideal factorization of Gauss sums in cyclotomic fields. When \(K\) is an abelian extension of \(\mathbb Q\), Stickelberger’s result yields an element of the group ring of \(\mathrm{Gal}(K/\mathbb Q)\) that annihilates the ideal class group of \(K\). A.Brumer gave an interpretation in terms of special values of zeta functions and conjectured a similar result for abelian extensions of totally real number fields. J.Tate combined this conjecture with conjectures of H. Stark on existence of units related to values of \(L\)-series, yielding what is known as the Brumer-Stark conjecture. This conjecture, up to the 2-part, is proved in the present paper.
Here is a more precise description of the result. The well-written introduction to the paper gives much more detail and motivation and is highly recommended. Let \(F\) be a totally real number field, let \(H\) be a finite abelian extension of \(F\) that is also a CM field, and let \(G=\mathrm{Gal}(H/K)\). Let \(S, T\) be disjoint finite sets of places of \(F\) with \(S\) containing the set \(S_{\infty}\) of infinite places of \(F\). For a character \(\chi\) of \(G\), the \(S\)-depleted, \(T\)-smoothed \(L\)-function of \(\chi\) is \[ L_{S,T}(\chi, s)= L(s, \chi)\prod_{\mathfrak p \in S\setminus S_{\infty}} (1-\chi(\mathfrak{p})N\mathfrak{p}^{-s}) \prod_{\mathfrak p \in T} (1-\chi(\mathfrak{p})N\mathfrak{p}^{1-s}). \] The Stickelberger element \(\Theta_{S,T}\in \mathbb Q[G]\) satisfies \[ \chi(\Theta_{S,T})=L_{S,T}(\chi^{-1}, 0) \] for all \(\chi\). Now assume \(S\) also contains the set of primes of \(F\) that ramify in \(H/F\), and assume that \(T\) satisfies the following condition: if \(\zeta\in H\) is a root of unity with \(\zeta\equiv 1\pmod {\mathfrak p}\) for all primes \(\mathfrak p\) of \(H\) above primes in \(T\), then \(\zeta=1\). Then \(\Theta_{S,T}\in \mathbb Z[G]\). Let \(Cl^T(H)\) be the ray class group of \(H\) with conductor equal to the product of the primes of \(H\) above those in \(T\). The main theorem of the paper is the following: \[ \Theta_{S,T}\in \mathrm{Ann}_{\mathbb Z[G]}(Cl^T(H))\otimes \mathbb Z[\frac12]. \] In fact, the authors prove a stronger result, conjectured by M.Kurihara, giving a twist of \(\Theta_{S,T}\) as an element of the Fitting ideal of the minus part of the dual of \(Cl^T(H)\), and they obtain an exact formula for this Fitting ideal in terms of Stickelberger elements. From this, they deduce the prime-to-2 part of K. Rubin’s higher rank generalization [Ann. Inst. Fourier 46, No. 1, 33–62 (1996; Zbl 0834.11044)] of the Brumer-Stark conjecture.
The starting point for the proofs is the method used by K.Ribet to prove the converse of Herbrand’s theorem and extended to group ring valued Hilbert modular forms by A.Wiles in his work on the Iwasawa Main Conjecture for totally real fields. However, a key point of the present paper is that the congruences constructed between cusp forms and Eisenstein series are stronger than might be expected and result from trivial zeros of \(p\)-adic \(L\)-functions.

MSC:

11R23 Iwasawa theory
11R29 Class numbers, class groups, discriminants
11R42 Zeta functions and \(L\)-functions of number fields

References:

[1] Atiyah, M. F.; Macdonald, I. G., Introduction to Commutative Algebra, ix+128 pp. (1969) · Zbl 1351.13002
[2] Balasubramanyam, Baskar; Ghate, Eknath; Vatsal, Vinayak, On local {G}alois representations associated to ordinary {H}ilbert modular forms, Manuscripta Math.. Manuscripta Mathematica, 142, 513-524 (2013) · Zbl 1307.11067 · doi:10.1007/s00229-013-0614-1
[3] Bourbaki, Nicolas, Commutative Algebra. {C}hapters 1-7, Elements of Math. (Berlin), xxiv+625 pp. (1989) · Zbl 0666.13001
[4] Burns, David, On derivatives of {\(p\)}-adic {\(L\)}-series at {\(s = 0\)}, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 762, 53-104 (2020) · Zbl 1492.11148 · doi:10.1515/crelle-2018-0020
[5] Burns, David; Kurihara, Masato; Sano, Takamichi, On zeta elements for {\( \mathbb{G}_m\)}, Doc. Math.. Documenta Mathematica, 21, 555-626 (2016) · Zbl 1407.11133
[6] Burns, David; Kurihara, Masato; Sano, Takamichi, On {I}wasawa theory, zeta elements for {\( \Bbb G_m\)}, and the equivariant {T}amagawa number conjecture, Algebra Number Theory. Algebra & Number Theory, 11, 1527-1571 (2017) · Zbl 1455.11158 · doi:10.2140/ant.2017.11.1527
[7] Burns, David; Sano, Takamichi, On the theory of higher rank {E}uler, {K}olyvagin and {S}tark systems, Int. Math. Res. Not. IMRN. International Mathematics Research Notices. IMRN, 10118-10206 (2021) · Zbl 1496.11132 · doi:10.1093/imrn/rnz103
[8] J. W. S. Cassels; A. Fr\"{o}hlich, Algebraic Number Theory, Proc. of an instructional conference organized by the London Math. Soc. (a NATO Advanced Study Institute) with the support of the International Mathematical Union, xviii+366 pp. (1967) · Zbl 0153.07403
[9] Cassou-Nogu\`es, Pierrette, {\(p\)}-adic {\(L\)}-functions for totally real number field. Proceedings of the {C}onference on {\(p\)}-adic {A}nalysis, Report, 7806, 24-37 (1978)
[10] Coates, John (2020)
[11] Coates, John; Sinnott, W., On {\(p\)}-adic {\(L\)}-functions over real quadratic fields, Invent. Math.. Inventiones Mathematicae, 25, 253-279 (1974) · Zbl 0305.12008 · doi:10.1007/BF01389730
[12] Dasgupta, Samit; Darmon, Henri; Pollack, Robert, Hilbert modular forms and the {G}ross-{S}tark conjecture, Ann. of Math. (2). Annals of Mathematics. Second Series, 174, 439-484 (2011) · Zbl 1250.11099 · doi:10.4007/annals.2011.174.1.12
[13] Dasgupta, Samit; Kakde, Mahesh, Brumer–{S}tark units and {H}ilbert’s 12th problem (2021) · Zbl 1525.11128
[14] Dasgupta, Samit; Kakde, Mahesh, On constant terms of {E}isenstein series, Acta Arith.. Acta Arithmetica, 200, 119-147 (2021) · Zbl 1483.11088 · doi:10.4064/aa200621-24-2
[15] Dasgupta, Samit; Kakde, Mahesh; Ventullo, Kevin, On the {G}ross-{S}tark conjecture, Ann. of Math. (2). Annals of Mathematics. Second Series, 188, 833-870 (2018) · Zbl 1416.11160 · doi:10.4007/annals.2018.188.3.3
[16] Deligne, Pierre; Ribet, Kenneth A., Values of abelian {\(L\)}-functions at negative integers over totally real fields, Invent. Math.. Inventiones Mathematicae, 59, 227-286 (1980) · Zbl 0434.12009 · doi:10.1007/BF01453237
[17] Greither, Cornelius, Some cases of {B}rumer’s conjecture for abelian {CM} extensions of totally real fields, Math. Z.. Mathematische Zeitschrift, 233, 515-534 (2000) · Zbl 0965.11047 · doi:10.1007/s002090050485
[18] Greither, Cornelius, Determining {F}itting ideals of minus class groups via the equivariant {T}amagawa number conjecture, Compos. Math.. Compositio Mathematica, 143, 1399-1426 (2007) · Zbl 1135.11059 · doi:10.1112/S0010437X07002965
[19] Greither, Cornelius; Kurihara, Masato, Stickelberger elements, {F}itting ideals of class groups of {CM}-fields, and dualisation, Math. Z.. Mathematische Zeitschrift, 260, 905-930 (2008) · Zbl 1159.11042 · doi:10.1007/s00209-008-0306-9
[20] Greither, Cornelius; Popescu, Cristian D., An equivariant main conjecture in {I}wasawa theory and applications, J. Algebraic Geom.. Journal of Algebraic Geometry, 24, 629-692 (2015) · Zbl 1330.11070 · doi:10.1090/jag/635
[21] Gross, Benedict H., {\(p\)}-adic {\(L\)}-series at {\(s=0\)}, J. Fac. Sci. Univ. Tokyo Sect. IA Math.. Journal of the Faculty of Science. Univ. of Tokyo. Section IA. Mathematics, 28, 979-994 (1981) · Zbl 0507.12010
[22] Hara, Takashi; Ochiai, Tadashi, The cyclotomic {I}wasawa main conjecture for {H}ilbert cusp forms with complex multiplication, Kyoto J. Math.. Kyoto Journal of Mathematics, 58, 1-100 (2018) · Zbl 1442.11145 · doi:10.1215/21562261-2017-0018
[23] Jannsen, Uwe, Iwasawa modules up to isomorphism. Algebraic number theory, Adv. Stud. Pure Math., 17, 171-207 (1989) · Zbl 0732.11061 · doi:10.2969/aspm/01710171
[24] Kataoka, T., Fitting invariants in equivariant {I}wasawa theory. Development of Iwasawa Theory, Adv. Stud. Pure Math., 86, 413-465 (2020) · Zbl 1469.11421
[25] Klingen, Helmut, \"{U}ber den arithmetischen {C}harakter der {F}ourierkoeffizienten von {M}odulformen, Math. Ann.. Mathematische Annalen, 147, 176-188 (1962) · Zbl 0104.26502 · doi:10.1007/BF01470949
[26] Kurihara, Masato, Notes on the dual of the ideal class groups of {CM}-fields, J. Th\'{e}or. Nombres Bordeaux. Journal de Th\'{e}orie des Nombres de Bordeaux, 33, 971-996 (2021) · Zbl 1492.11149 · doi:10.5802/jtnb.1184
[27] Mazur, Barry, How can we construct abelian {G}alois extensions of basic number fields?, Bull. Amer. Math. Soc. (N.S.). American Mathematical Society. Bulletin. New Series, 48, 155-209 (2011) · Zbl 1228.11163 · doi:10.1090/S0273-0979-2011-01326-X
[28] Nakayama, Tadasi, On modules of trivial cohomology over a finite group. {II}. {F}initely generated modules, Nagoya Math. J.. Nagoya Mathematical Journal, 12, 171-176 (1957) · Zbl 0207.33602 · doi:10.1017/S0027763000022030
[29] Neukirch, J\"{u}rgen, Class Field Theory, xii+184 pp. (2013) · Zbl 1282.11001 · doi:10.1007/978-3-642-35437-3
[30] Neukirch, J\"{u}rgen; Schmidt, Alexander; Wingberg, Kay, Cohomology of Number Fields, Grundlehren Math. Wissen., 323, xvi+825 pp. (2008) · Zbl 1136.11001 · doi:10.1007/978-3-540-37889-1
[31] Nickel, Andreas, On the equivariant {T}amagawa number conjecture in tame {CM}-extensions, Math. Z.. Mathematische Zeitschrift, 268, 1-35 (2011) · Zbl 1222.11133 · doi:10.1007/s00209-009-0658-9
[32] Northcott, D. G., Finite Free Resolutions, Cambridge Tracts in Math., 71, xii+271 pp. (1976) · Zbl 0328.13010 · doi:10.1017/CBO9780511565892
[33] Popescu, Cristian D., On the {R}ubin-{S}tark conjecture for a special class of {CM} extensions of totally real number fields, Math. Z.. Mathematische Zeitschrift, 247, 529-547 (2004) · Zbl 1197.11153 · doi:10.1007/s00209-003-0624-x
[34] Popescu, Cristian D., The {R}ubin-{S}tark conjecture for a special class of function field extensions, J. Number Theory. Journal of Number Theory, 113, 276-307 (2005) · Zbl 1138.11346 · doi:10.1016/j.jnt.2004.10.002
[35] Popescu, Cristian D., Integral and {\(p\)}-adic refinements of the abelian {S}tark conjecture. Arithmetic of {\(L\)}-Functions, IAS/Park City Math. Ser., 18, 45-101 (2011) · Zbl 1260.11068 · doi:10.1090/pcms/018/04
[36] Ribet, Kenneth A., On {\( \mathcal{\ell} \)}-adic representations attached to modular forms, Invent. Math.. Inventiones Mathematicae, 28, 245-275 (1975) · Zbl 0302.10027 · doi:10.1007/BF01425561
[37] Ribet, Kenneth A., A modular construction of unramified {\(p\)}-extensions of {\(Q(\mu \sb{p})\)}, Invent. Math.. Inventiones Mathematicae, 34, 151-162 (1976) · Zbl 0338.12003 · doi:10.1007/BF01403065
[38] Rideout, Donald Eric, On a generalization of a theorem of {S}tickelberger, (no paging) pp. (1970)
[39] Ritter, J\"{u}rgen; Weiss, Alfred, A {T}ate sequence for global units, Compositio Math.. Compositio Mathematica, 102, 147-178 (1996) · Zbl 0948.11041
[40] Rubin, Karl, A {S}tark conjecture “over {\( \bold Z\)}” for abelian {\(L\)}-functions with multiple zeros, Ann. Inst. Fourier (Grenoble). Universit\'{e} de Grenoble. Annales de l’Institut Fourier, 46, 33-62 (1996) · Zbl 0834.11044 · doi:10.5802/aif.1505
[41] Serre, {\relax J-P}, Corps Locaux, Publ. l’Institut de Math\'{e}matique de l’Universit\'{e} de Nancago, VIII, 243 pp. (1962) · Zbl 0137.02601
[42] Shimura, Goro, The special values of the zeta functions associated with {H}ilbert modular forms, Duke Math. J.. Duke Mathematical Journal, 45, 637-679 (1978) · Zbl 0394.10015 · doi:10.1215/S0012-7094-78-04529-5
[43] Siegel, Carl Ludwig, \"{U}ber die {F}ourierschen {K}oeffizienten von {M}odulformen, Nachr. Akad. Wiss. G\"{o}ttingen Math.-Phys. Kl. II. Nachrichten der Akademie der Wissenschaften zu G\"{o}ttingen. II. Mathematisch-Physikalische Klasse, 1970, 15-56 (1970) · Zbl 0225.10031
[44] Silliman, Jesse, Group ring valued {H}ilbert modular forms (2020)
[45] Stark, Harold M., {\(L\)}-functions at {\(s=1\)}. {IV}. {F}irst derivatives at {\(s=0\)}, Adv. in Math.. Advances in Mathematics, 35, 197-235 (1980) · Zbl 0475.12018 · doi:10.1016/0001-8708(80)90049-3
[46] Stark, Harold\noopsort{ M.}, The origin of the “{S}tark conjectures”. Arithmetic of {\(L\)}-functions, IAS/Park City Math. Ser., 18, 33-44 (2011) · Zbl 1263.11100 · doi:10.1090/pcms/018/03
[47] Stickelberger, L., Ueber eine {V}erallgemeinerung der {K}reistheilung, Math. Ann.. Mathematische Annalen, 37, 321-367 (1890) · JFM 22.0100.01 · doi:10.1007/BF01721360
[48] Tate, John, Les Conjectures de {S}tark sur les Fonctions {\(L\)} d’{A}rtin en {\(s=0\)}, Progr. in Math., 47, 143 pp. (1984) · Zbl 0704.90090 · doi:10.1007/BF01580857
[49] Weibel, Charles A., An Introduction to Homological Algebra, Cambridge Stud. Adv. Math., 38, xiv+450 pp. (1994) · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
[50] Wiles, A., On ordinary {\( \lambda \)}-adic representations associated to modular forms, Invent. Math.. Inventiones Mathematicae, 94, 529-573 (1988) · Zbl 0664.10013 · doi:10.1007/BF01394275
[51] Wiles, A., The {I}wasawa conjecture for totally real fields, Ann. of Math. (2). Annals of Mathematics. Second Series, 131, 493-540 (1990) · Zbl 0719.11071 · doi:10.2307/1971468
[52] Wiles, A., On a conjecture of {B}rumer, Ann. of Math. (2). Annals of Mathematics. Second Series, 131, 555-565 (1990) · Zbl 0719.11082 · doi:10.2307/1971470
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.