×

On Frobenius exact symmetric tensor categories. (English) Zbl 1537.18019

Let \(\mathbf{k}\) be an algebraically closed field and \(\mathcal{C}\) a pre-Tannakian category over \(\mathbf{k}\), which means a \(\mathbf{k}\)-linear abelian symmetric rigid monoidal category with bilinear tensor product and \(\text{End}(\mathbf{1}) = \mathbf{k}\), in which objects have finite length. Assume that \(\mathcal{C}\) has moderate growth; that is, lengths of \(V^{\otimes n}\) for \(V \in \mathcal{C}\) grow at most exponentially with \(n\). A fundamental theorem of Deligne states that a pre-Tannakian category over an algebraically closed field of characteristic zero admits a fiber functor to the category of supervector spaces if and only if it has moderate growth. The authors prove a characteristic \(p\) version of this theorem. They show that a pre-Tannakian category over an algebraically closed field of characteristic \(p > 0\) admits a fiber functor into the Verlinde category \(\text{Ver}_p\) if and only if it has moderate growth and is Frobenius exact. This implies that Frobenius exact pre-Tannakian categories of moderate growth admit a well behaved notion of Frobenius-Perron dimension. It follows that any semisimple pre-Tannakian category of moderate growth has a fiber functor to \(\text{Ver}_p\), so Deligne’s theorem holds for semisimple pre-Tannakian categories in characteristics \(2\), \(3\), settling a conjecture of the third author from 2015.
This result applies to semisimplifications of categories of modular representations of finite group schemes, which gives new applications to classical modular representation theory. In one particular instance, it allows one to characterize, for a modular representation \(V\), the possible growth rates of the number of indecomposable summands in \(V^{\otimes n}\) of dimension prime to \(p\).

MSC:

18M05 Monoidal categories, symmetric monoidal categories
14L15 Group schemes
16T05 Hopf algebras and their applications
20C20 Modular representations and characters

References:

[1] Archer, L., Hall algebras and {G}reen rings
[2] Benson, D., Commutative {B}anach algebras and modular representation theory (2020)
[3] Benson, Dave, Some conjectures and their consequences for tensor products of modules over a finite {\(p\)}-group, J. Algebra. Journal of Algebra, 558, 24-42 (2020) · Zbl 1462.20003 · doi:10.1016/j.jalgebra.2019.10.012
[4] Benson, Dave; Etingof, Pavel, Symmetric tensor categories in characteristic 2, Adv. Math.. Advances in Mathematics, 351, 967-999 (2019) · Zbl 1430.18013 · doi:10.1016/j.aim.2019.05.020
[5] Benson, Dave; Etingof, Pavel, New incompressible symmetric tensor categories in positive characteristic (2020) · Zbl 1511.18019
[6] Benson, Dave; Symonds, Peter, The non-projective part of the tensor powers of a module, J. Lond. Math. Soc. (2). Journal of the London Mathematical Society. Second Series, 101, 828-856 (2020) · Zbl 1481.20027 · doi:10.1112/jlms.12288
[7] Berele, A.; Regev, A., Hook {Y}oung diagrams with applications to combinatorics and to representations of {L}ie superalgebras, Adv. in Math.. Advances in Mathematics, 64, 118-175 (1987) · Zbl 0617.17002 · doi:10.1016/0001-8708(87)90007-7
[8] Brundan, Jonathan; Kleshchev, Alexander, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3). Proceedings of the London Mathematical Society. Third Series, 80, 75-106 (2000) · Zbl 1011.20042 · doi:10.1112/S0024611500012132
[9] Coulembier, Kevin, Tannakian categories in positive characteristic, Duke Math. J.. Duke Mathematical Journal, 169, 3167-3219 (2020) · Zbl 1458.18008 · doi:10.1215/00127094-2020-0026
[10] Coulembier, Kevin, Monoidal abelian envelopes, Compos. Math.. Compositio Mathematica, 157, 1584-1609 (2021) · Zbl 1471.18020 · doi:10.1112/S0010437X21007399
[11] Coulembier, Kevin; Etingof, P.; Ostrik, V.; Pauwels, B., Monoidal abelian envelopes with a quotient property (2021) · Zbl 1504.18014
[12] de Concini, C.; Procesi, C., A characteristic free approach to invariant theory, Advances in Math.. Advances in Mathematics, 21, 330-354 (1976) · Zbl 0347.20025 · doi:10.1016/S0001-8708(76)80003-5
[13] Deligne, P., Cat\'{e}gories tannakiennes. The {G}rothendieck {F}estschrift, {V}ol. {II}, Progr. Math., 87, 111-195 (1990) · Zbl 0727.14010
[14] Deligne, P., Cat\'{e}gories tensorielles, Mosc. Math. J.. Moscow Mathematical Journal, 2, 227-248 (2002) · Zbl 1005.18009 · doi:10.17323/1609-4514-2002-2-2-227-248
[15] Demazure, Michel; Gabriel, Pierre, Groupes Alg\'{e}briques. {T}ome {I}: {G}\'{e}om\'{e}trie alg\'{e}brique, G\'{e}n\'{e}ralit\'{e}s, Groupes Commutatifs, xxvi+700 pp. (1970) · Zbl 0203.23401
[16] Dubuc, Eduardo J.; Street, Ross, A construction of 2-filtered bicolimits of categories, Cah. Topol. G\'{e}om. Diff\'{e}r. Cat\'{e}g.. Cahiers de Topologie et G\'{e}om\'{e}trie Diff\'{e}rentielle Cat\'{e}goriques, 47, 83-106 (2006) · Zbl 1110.18004
[17] Etingof, Pavel; Gelaki, Shlomo; Nikshych, Dmitri; Ostrik, Victor, Tensor Categories, Math. Surv. Monogr., 205, xvi+343 pp. (2015) · Zbl 1365.18001 · doi:10.1090/surv/205
[18] Etingof, Pavel; Harman, Nate; Ostrik, Victor, {\(p\)}-adic dimensions in symmetric tensor categories in characteristic {\(p\)}, Quantum Topol.. Quantum Topology, 9, 119-140 (2018) · Zbl 1390.18016 · doi:10.4171/QT/104
[19] Etingof, Pavel; Ostrik, Victor, On the {F}robenius functor for symmetric tensor categories in positive characteristic, J. Reine Angew. Math.. Journal f\"{u}r die Reine und Angewandte Mathematik. [Crelle’s Journal], 773, 165-198 (2021) · Zbl 1478.18019 · doi:10.1515/crelle-2020-0033
[20] Etingof, Pavel; Ostrik, Victor, On semisimplification of tensor categories (2018) · Zbl 1498.18023
[21] Etingof, Pavel; Ostrik, Victor; Venkatesh, Siddharth, Computations in symmetric fusion categories in characteristic {\(p\)}, Int. Math. Res. Not. IMRN. International Mathematics Research Notices. IMRN, 468-489 (2017) · Zbl 1405.18011 · doi:10.1093/imrn/rnw024
[22] Friedlander, Eric M.; Pevtsova, Julia; Suslin, Andrei, Generic and maximal {J}ordan types, Invent. Math.. Inventiones Mathematicae, 168, 485-522 (2007) · Zbl 1117.14047 · doi:10.1007/s00222-007-0037-2
[23] James, G. D., The Representation Theory of the Symmetric Groups, Lecture Notes in Math., 682, v+156 pp. (1978) · Zbl 0393.20009
[24] Harman, N., Deligne categories as limits in rank and characteristic
[25] Gaitsgory, D., The notion of category over an algebraic stack (2005)
[26] Majid, Shahn, Foundations of Quantum Group Theory, x+607 pp. (1995) · Zbl 0857.17009 · doi:10.1017/CBO9780511613104
[27] Nagata, Masayoshi, Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ.. Journal of Mathematics of Kyoto Univ., 1, 87-99 (1961/62) · Zbl 0106.25201 · doi:10.1215/kjm/1250525107
[28] Ostrik, Victor, On symmetric fusion categories in positive characteristic, Selecta Math. (N.S.). Selecta Mathematica. New Series, 26, 36-19 (2020) · Zbl 1440.18032 · doi:10.1007/s00029-020-00567-5
[29] Venkatesh, S., Harish-{C}handra pairs in the {V}erlinde category in positive characteristic (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.