×

Faulhaber polynomials and reciprocal Bernoulli polynomials. (English) Zbl 07690303

Summary: About four centuries ago, Johann Faulhaber developed formulas for the power sum \(1^n+2^n+\cdots+m^n\) in terms of \(m(m+1)/2\). The resulting polynomials are called the Faulhaber polynomials. We first give a short survey of Faulhaber’s work and discuss the results of Jacobi (1834) and the less known ones of Schröder (1867), which already imply some results published afterwards. We then show, for suitable odd integers \(n\), the following properties of the Faulhaber polynomials \(F_n\). The recurrences between \(F_n, F_{n-1}\), and \(F_{n-2}\) can be described by a certain differential operator. Furthermore, we derive a recurrence formula for the coefficients of \(F_n\) that is the complement of a formula of Gessel and Viennot (1989). As a main result, we show that these coefficients can be expressed and computed in different ways by derivatives of generalized reciprocal Bernoulli polynomials, whose values can also be interpreted as central coefficients. This new approach finally leads to a simplified representation of the Faulhaber polynomials. As an application, we obtain some recurrences of the Bernoulli numbers, which are induced by symmetry properties.

MSC:

11B57 Farey sequences; the sequences \(1^k, 2^k, \dots\)
11B68 Bernoulli and Euler numbers and polynomials
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[1] H.-W. Alten, A. D. Naini, M. Folkerts, H. Schlosser, K.-H. Schlote, and H. Wußing, 4000 Jahre Algebra, Springer, Berlin, 2003. · Zbl 1029.01002
[2] P. Appell, “Sur une classe de polynômes”, Ann. Sci. École Norm. Sup. (2) 9 (1880), 119-144. · JFM 12.0342.02
[3] P. Bachmann, Niedere Zahlentheorie, Chelsea, Bronx, 1968.
[4] A. F. Beardon, “Sums of powers of integers”, Amer. Math. Monthly 103:3 (1996), 201-213. · Zbl 0851.11012
[5] J. Bernoulli, Ars conjectandi [with] Tractatus de seriebus infinitis et epistola Gallicè scripta de ludo pilæ reticularis, Tournes brothers, Basel, 1713.
[6] F. van der Blij, “Once again \[\textstyle\sum_{k=1}^{n-1}k^p\]”, Euclides 34 (1958), 26-27. In Dutch. · Zbl 0081.27002
[7] F. F. di Bruno, “Note sur une nouvelle formule de calcul différentiel”, Quart. J. Pure Appl. Math. 1 (1857), 359-360.
[8] F. Cajori, A history of mathematical notations, Open Court, Chicago, 1928. · JFM 54.0001.04
[9] M. Cantor, Vorlesungen über Geschichte der Mathematik, vol. 1-2, Teubner, Leipzig, 1892.
[10] L. Carlitz, “Classroom notes: a note on sums of powers of integers”, Amer. Math. Monthly 69:4 (1962), 290-291.
[11] L. Carlitz, “A note on Bernoulli numbers and polynomials”, Elem. Math. 29 (1974), 90-92.
[12] L. Comtet, Advanced combinatorics: the art of finite and infinite expansions, Reidel, Dordrecht, 1974.
[13] A. W. F. Edwards, “Sums of powers of integers: a little of the history”, Math. Gaz. 66:435 (1982), 22-28. · Zbl 0493.10004
[14] A. W. F. Edwards, “A quick route to sums of powers”, Amer. Math. Monthly 93 (1986), 451-455. · Zbl 0605.40004
[15] A. von Ettingshausen, Vorlesungen über die höhere Mathematik, vol. 1, Carl Gerold, Vienna, 1827.
[16] L. Euler, “De summis serierum reciprocarum”, Novi Comm. Acad. Sci. Petrop. 7 (1740), 123-134.
[17] L. Euler, “Inventio summae cuiusque seriei ex dato termino generali”, Novi Comm. Acad. Sci. Petrop. 8 (1741), 9-22.
[18] L. Euler, Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, Imperial Academy of Sciences, Saint Petersburg, 1755.
[19] L. Euler, “De summis serierum numeros Bernoullianos involventium”, Novi Comm. Acad. Sci. Petrop. 14 (1770), 129-167.
[20] J. Faulhaber, Continuatio seiner neuen Wunderkünsten, Conradt Holtzhalb, Nürnberg, 1617.
[21] J. Faulhaber, Newer Arithmetischer Wegweyser, 2nd ed., Johann Meder, Ulm, 1617.
[22] J. Faulhaber, Academia Algebrae, Johann Remmelin, Augsburg, 1631.
[23] C. F. Gauss and H. C. Schumacher, Briefwechsel zwischen C. F. Gauss und H. C. Schumacher, Gustav Esch, Altona, 1865.
[24] A. Genocchi, “Intorno all’espressione generale de’numeri Bernulliani”, Ann. Sci. Mat. Fis. 3 (1852), 395-405.
[25] I. Gessel, “Applications of the classical umbral calculus”, Algebra Universalis 49:4 (2003), 397-434. · Zbl 1092.05005
[26] I. Gessel and X. Viennot, “Determinants, paths, and plane partitions”, preprint, 1989, https://tinyurl.com/gesselviennot89. · Zbl 0579.05004
[27] J. W. L. Glaisher, “On the sums of the series \[1^n+2^n+\cdots+x^n\] and \[1^n-2^n+\cdots\pm x^n\]”, Quart. J. Pure Appl. Math. 30 (1899), 166-204. · JFM 29.0220.01
[28] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics: a foundation for computer science, 2nd ed., Addison-Wesley, Reading, MA, 1994. · Zbl 0836.00001
[29] R. Hoppe, “Ueber independente Darstellung der höhern Differentialquotienten und den Gebrauch des Summenzeichens”, J. Reine Angew. Math. 33 (1846), 78-89. · ERAM 033.0936cj
[30] C. G. J. Jacobi, “De usu legitimo formulae summatoriae Maclaurinianae”, J. Reine Angew. Math. 12 (1834), 263-272. · ERAM 012.0459cj
[31] S. A. Joffe, “Sums of like powers of natural numbers”, Quart. J. Pure Appl. Math. 46 (1915), 33-51. · JFM 45.1244.02
[32] W. P. Johnson, “The curious history of Faà di Bruno’s formula”, Amer. Math. Monthly 109:3 (2002), 217-234. · Zbl 1024.01010
[33] A. G. Kästner, Geschichte der Mathematik, Rosenbusch, Göttingen, 1799.
[34] B. C. Kellner, “On (self-) reciprocal Appell polynomials: symmetry and Faulhaber-type polynomials”, Integers 21 (2021), art. id. A119.
[35] D. E. Knuth, “Johann Faulhaber and sums of powers”, Math. Comp. 61:203 (1993), 277-294. · Zbl 0797.11026
[36] I. Lah, “A new kind of numbers and its application in the actuarial mathematics”, Inst. Actuários Portug. 9 (1954), 7-15.
[37] E. Lampe, “Auszug eines Schreibens an Herrn Stern über die ‘Verallgemeinerung einer Jacobischen Formel”’, J. Reine Angew. Math. 84 (1878), 270-272. · JFM 09.0176.03
[38] G. Lejeune Dirichlet, “Gedächtnisrede auf Carl Gustav Jacob Jacobi”, J. Reine Angew. Math. 52 (1856), 193-217.
[39] E. Lucas, Théorie des nombres, Gauthier, Paris, 1891.
[40] C. Maclaurin, A treatise of fluxions, Ruddimans, Edinburgh, 1742.
[41] N. E. Nørlund, “Mémoire sur les polynomes de Bernoulli”, Acta Math. 43:1 (1922), 121-196. · JFM 47.0216.05
[42] N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924. · JFM 50.0315.02
[43] J. J. O’Connor and E. F. Robertson, “Carl Gustav Jacob Jacobi, MacTutor history of mathematics”, electronic reference, 2000, https://mathshistory.st-andrews.ac.uk/Biographies/Jacobi/.
[44] L. Pacioli, Summa de arithmetica geometria, Paganino Paganini, Venice, 1494.
[45] S. D. Poisson, “Mémoire sur le calcul numérique des intégrales définies”, Acad. Sci. 6 (1826), 1-34.
[46] V. V. Prasolov, Polynomials, Algorithms and Computation in Mathematics 11, Springer, Berlin, 2010.
[47] J. L. Raabe, Die Jacob Bernoullische Function, Orell Füssli, Zürich, 1848.
[48] J. L. Raabe, “Zurückführung einiger Summen und bestimmten Integrale auf die Jacob-Bernoullische Function”, J. Reine Angew. Math. 42 (1851), 348-367. · ERAM 042.1172cj
[49] I. Schneider, “Potenzsummenformeln im 17. Jahrhundert”, Historia Math. 10:3 (1983), 286-296. · Zbl 0522.01004
[50] I. Schneider, Johannes Faulhaber 1580-1635, Rechenmeister in einer Welt des Umbruchs, Vita Mathematica 7, Birkhäuser, Basel, 1993. · Zbl 0786.01020
[51] E. Schröder, Eine Verallgemeinerung der Mac-Laurinschen Summenformel, Kantonsschule, Zürich, 1867.
[52] M. Stern, “Verallgemeinerung einer Jacobischen Formel”, J. Reine Angew. Math. 84 (1878), 216-219. · JFM 09.0176.02
[53] C. Sturm, Cours d’analyse, vol. 2, Mallet-Bachelier, Paris, 1859.
[54] L. Tits, “Identités nouvelles pour le calcul des nombres de Bernoulli”, Nouv. Ann. Math. 1 (1922), 191-196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.