zbMATH — the first resource for mathematics

Weak solutions of the Vlasov–Poisson initial boundary value problem. (English) Zbl 0786.35014
The author considers the Vlasov-Poisson system in the form \[ \partial_ t f+\xi \cdot \nabla_ xf+\nabla_ xu(t,x)\cdot \nabla_ \xi f=0,\qquad -\Delta_ xu=\int f d \xi, \] where \(t \geq 0\), \((x,\xi)\in \Omega \times \mathbb{R}^ N\) with \(\Omega \subset \mathbb{R}^ N\) regular, open, and bounded. Assuming absorbing boundary conditions for the phase space density \(f\) and Dirichlet boundary conditions for the electrostatic potential \(u\) the author proves global existence of weak solutions to the corresponding initial value problem and uses these solutions to investigate homogenization effects.
The inclusion of boundary effects is an important extension of previous existence results for the Vlasov-Poisson system. The only result in this direction that the reviewer knows of is due to Y. Guo [Commun. Math. Phys. 154, No. 2, 245-263 (1993)] who treats the Vlasov-Maxwell system with quite general boundary conditions. The author claims that his results remain true for other boundary conditions, for example for specular reflection, a condition which seems more natural in connection with homogenization. However, specular reflection is in general more difficult to handle than absorbing boundary conditions. For example, in the former case the linear Vlasov equation not necessarily has smooth solutions, and Sect. 2.3 would have to be changed.
The extension to the higher dimensional cases \(N>3\) occupies a large part of the paper and is justified by the author by interpreting \(f\) as the joint position/velocity probability density of a system of \(m\) electrons, \(N=3m\). This is inconsistent with the coupling with the Poisson equation. As explained in reference [22] of the paper, pp. 17-19, the Vlasov- Poisson system arises only after passing to the electron number density on phase space \(\Omega \times \mathbb{R}^ 3\), \(\Omega \subset \mathbb{R}^ 3\), via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy.
Reviewer: G.Rein (München)

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35D05 Existence of generalized solutions of PDE (MSC2000)
35D10 Regularity of generalized solutions of PDE (MSC2000)
82B40 Kinetic theory of gases in equilibrium statistical mechanics
Full Text: DOI
[1] and , ’Homogénéisation d’équations cinétiques dans un domaine perfore’, Note C. R. A. S tome 313, Paris, 1991.
[2] Alexandre, Asymptotic Analysis
[3] ’Effective behaviour for kinetic equations. The critical case’, Preprint.
[4] ’Ordinary differential equations’, in: Studies in Maths, De Gruyter, New York, 1990.
[5] Asano, J. Math. Kyoto Univ. 24 pp 225– (1984)
[6] ’Problémes aux limites pour les e. d. p du 1{\(\deg\)} ordre’, Ann. Scient. EC. Norm. Sup. No. 4, série t3, Paris, 1971, 185-233.
[7] Bardos, Ann. Inst. Poincaré Analyse Non linéaire 2 pp 101– (1985)
[8] Problémes aux limites non homogènes, Presses de Montréal, 1966.
[9] Bouchut, Comm. in Partial Diff. Eq. 16 pp 1337– (1991)
[10] Analyse fonctionelle et applications, Masson, Paris, 1983.
[11] and , ’Un terme etrange venu d’ailleurs I et II’, Nonlinear. P. D. E. and Applications, Collége de France Seminars-Paris.
[12] and , Calcul scientifique pour les sciences et les techniques, Masson, Paris, 1983.
[13] and , ’Solutions globales du type Vlasov-Poisson’, Notes C. R. A. S, Paris, 1989, 655-658.
[14] Di perna, Comm. in Pure and Applied Maths. 120 pp 729– (1990)
[15] Di perna, Invent. Math. 98 pp 511– (1989)
[16] Di Perna, Ann. Inst. Poincaré Analyse non linéaire 3 (1991)
[17] and , ’Boundary value problems in abstract kinetic theory’, in: Operator Theory, Adv. and Appl. vol. 23, Birkhauser, New York, 1990.
[18] Hamdache, Archive for Rat. Mech. and Anal.
[19] and , ’Weak solutions of the initial value problem for the unmodified non-linear Vlasov equation’, Math. Meth. in the Appl. Sci. 262-279 (1984). · Zbl 0556.35022
[20] and , ’Estimation de l’erreur dans des problèmes de Dirichlet où apparait un terme ètrange’, Publi. du L. A. N., Paris, 1989.
[21] and , ’Régularité des solutions du système de Vlasov-Poisson en dimension 3’, C. R. A. S. t311 Sèrie I, 1990, 205-210.
[22] and , Semiconductor Equations, Springer, Wien, New York, 1991.
[23] ’Boundary value problems for the stationnary Vlasov-Maxwell system’, Pre-print n{\(\deg\)}297, Université de Nice, 1991.
[24] ’Stationnary Vlasov-Poisson system’, Notes C. R. A. S., Paris, 1990.
[25] Schaeffer, Comm. in Part. Diff. Eq. 16 pp 1313– (1991)
[26] Green’s Functions and Boundary Value Problems, Wiley Interscience, 1979.
[27] Equations elliptiques a coefficients discontinus, Presses de Montréal, 1966. · Zbl 0151.15501
[28] ’Cours Peccot’, Collége de France, Paris-France, 1977.
[29] Ukai, Osaka J. Math. 15 pp 245– (1978)
[30] Functional analytic treatment of the initial boundary value problems for collisionless gases ’Functional analytic treatment of the initial boundary value problems for collisionless gases’, Habilitationsschrift, Ludwig Maximilians University, Munchen, 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.