The Bernoulli property for expansive \(\mathbb Z^ 2\) actions on compact groups. (English) Zbl 0789.28014

Summary: We show that an expansive \(\mathbb Z^ 2\)-action on a compact Abelian group is measurably isomorphic to a two-dimensional Bernoulli shift if and only if it has completely positive entropy. The proof uses the algebraic structure of such actions described by Kitchens and Schmidt and an algebraic characterization of the \(K\) property due to Lind, Schmidt and the author. As a corollary, we note that an expansive \(\mathbb Z^ 2\) action on a compact Abelian group is measurably isomorphic to a Bernoulli shift relative to the Pinsker algebra. A further corollary applies an argument of Lind to show that an expansive \(K\) action of \(\mathbb Z^ 2\) on a compact Abelian group is exponentially recurrent. Finally, an example is given of measurable isomorphism without topological conjugacy for \(\mathbb Z^ 2\) actions.


28D15 General groups of measure-preserving transformations
22D40 Ergodic theory on groups
28D20 Entropy and other invariants
Full Text: DOI


[1] D. Boyd,Kronecker’s theorem and Lehmer’s problem for polynomials in several variables, Number Theory13 (1981), 116–121. · Zbl 0447.12003
[2] H. Chu,Some results on affine transformations of compact groups, Invent. Math.28 (1975), 161–183. · Zbl 0299.22009
[3] J. P. Conze,Entropie d’un groupe abélien de transformations, Z. Wahrsch. verw. Geb.25 (1972), 11–30. · Zbl 0261.28015
[4] J. Feldman, D. J. Rudolph and C. C. Moore,Affine extensions of a Bernoulli shift, Trans. Amer. Math. Soc.257 (1980), 171–191. · Zbl 0427.28016
[5] M. Fried,On Hilbert’s irreducibility theorem, Number Theory8 (1974), 211–231. · Zbl 0299.12002
[6] B. Kaminiski,Mixing properties of two–dimensional dynamical systems with completely positive entropy, Bull. Acad. Polonaise Sci.27 (1980), 453–463. · Zbl 0469.28013
[7] J. Kammeyer,The isomorphism theorem for relatively finitely determined \(\mathbb{Z}\) n actions, Israel Math.69 (1990), 117–127. · Zbl 0699.28009
[8] Y. Katznelson,Ergodic automorphisms of T n are Bernoulli shifts, Israel Math.10 (1971), 186–95. · Zbl 0219.28014
[9] M. Keane and M. Smorodinsky,The finitary isomorphism theorem for Markov shifts, Bull. Amer. Math. Soc.1 (1979), 436–438. · Zbl 0407.28010
[10] B. Kitchens and K. Schmidt,Automorphisms of compact groups, Ergodic Theory & Dynamical Systems9 (1989), 691–735. · Zbl 0709.54023
[11] S. Lang,Algebra, 2nd ed., Addison-Wesley, Reading, 1984.
[12] D. A. Lind,Ergodic automorphisms of the infinite torus are Bernoulli, Israel Math.17 (1974), 162–168. · Zbl 0284.28007
[13] D. A. Lind,The structure of skew products with ergodic group automorphisms, Israel Math.28 (1977), 205–248. · Zbl 0365.28015
[14] D. A. Lind,Split skew products, a related functional equations, and specification, Israel Math.30 (1978), 236–254. · Zbl 0378.28007
[15] D. A. Lind,Ergodic group automorphisms are exponentially recurrent, Israel Math.41 (1982), 313–320. · Zbl 0495.28018
[16] D. Lind, K. Schmidt and T. Ward,Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math.101 (1990), 593–629. · Zbl 0774.22002
[17] D. A. Lind and T. Ward,Automorphisms of solenoids and p-adic entropy, Ergodic Theory & Dynamical Systems8 (1988), 411–419. · Zbl 0634.22005
[18] G. Miles and R. K. Thomas,Generalised torus automorphisms are Bernoullian, Studies in Probability and Ergodic Theory, Adv. in Math. Supp. Studies2 (1978), 231–249.
[19] D. S. Ornstein,Mixing Markov shifts of kernel type are Bernoulli, Advances in Math.10 (1973), 143–146. · Zbl 0252.28009
[20] D. S. Ornstein and B. Weiss,Entropy and isomorphism theorems for actions of amenable groups, Analyse Math.48 (1987), 1–141. · Zbl 0637.28015
[21] V. A. Rokhlin,Metric properties of endomorphisms of compact commutative groups, Amer. Math. Soc. Transl. (3)64 (1967), 244–252. · Zbl 0183.03602
[22] A. Rosenthal,Weak Pinsker property and Markov processes, Ann. Inst. Henri Poincaré22 (1986), 347–369. · Zbl 0617.28018
[23] D. Ruelle,Statistical mechanics on a compact set with \(\mathbb{Z}\) v action satisfying expansiveness and specification, Trans. Amer. Math. Soc.185 (1973), 237–251. · Zbl 0278.28012
[24] K. Schmidt,Mixing automorphisms of compact groups and a theorem by Kurt Mahler, Pacific Math.137 (1989), 371–385. · Zbl 0678.22002
[25] K. Schmidt,Automorphisms of compact abelian groups and affine varieties, Proc. London Math. Soc.61 (1990), 480–496. · Zbl 0789.28013
[26] P. Shields,The Theory of Bernoulli Shifts, Univ. of Chicago Press, 1973. · Zbl 0308.28011
[27] P. Shields,Almost block independence, Z. Wharsch. verw. Geb.49 (1979), 119–123. · Zbl 0393.60031
[28] T. Ward,Almost block independence for the three dot \(\mathbb{Z}\) 2 dynamical system, Israel Math.76 (1992), 237–256. · Zbl 0790.28013
[29] A. Weil,Basic Number Theory, 3rd ed., Springer, New York, 1982. · Zbl 0481.60018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.