zbMATH — the first resource for mathematics

A theorem of \(L^ 2\) extension of holomorphic sections of a Hermitian bundle. (Un théorème de prolongement \(L^ 2\) de sections holomorphes d’un fibré hermitien.) (French) Zbl 0789.32015
Let \(Y\) be a subvariety of a Stein variety \(X\), defined by a holomorphic section of a vector bundle \(E\), having generically a differential of maximal rank. We give sufficient conditions on the curvature of a hermitian line bundle \(L\), for any section of the line bundle \(K_ Y \otimes L \otimes (\text{det} E)^{-1}\) to extend to a section of \(K_ X \otimes L\) on \(X\), with \(L^ 2\) estimates. When \(X\) is a projective variety, we get a purely algebraic condition for the restriction morphism \(H^ 0(X,L) \to H^ 0(Y,L)\) to be surjective.

32Q20 Kähler-Einstein manifolds
Full Text: DOI EuDML
[1] [A-V] Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Publ. Math., Inst. Hautes Étud. Sci.25, 313–362 (1965) · Zbl 0138.06604
[2] [De1] Demailly, J.P.: Scindage holomorphe d’un morphisme de fibrés vectoriels semi-positifs avec estimationsL 2. In: Lelong, P., Skoda, H. (eds.) Seminaire Amiens 1980/81 et Colloque de Wimereux 1981. (Lects. Notes Math., vol. 919, pp. 77–107) Berlin Heidelberg New York: Springer 1982
[3] [De2] Demailly, J.P.: EstimationsL 2 pour l’opérateurd” d’un fibré vectoriel semi-positif audessus d’une variété kählérienne complète. Ann. Sci. Ec. Norm. Supér15, 457–511 (1982)
[4] [D-F] Donnelly, H., Fefferman, C.:L 2-cohomology and index theorem for the Bergman metric. Ann. Math.118, 593–618 (1983) · Zbl 0532.58027
[5] [D-X] Donnelly, H., Xavier, F.: On the differential form spectrum of negatively curved Riemann manifolds. Am. Math. J.106, 169–185 (1984) · Zbl 0547.58034
[6] [G-H] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978 · Zbl 0408.14001
[7] [Hö] Hörmander, L.: An introduction to complex analysis in several variables. Princeton: Van Nostrand 1966 · Zbl 0138.06203
[8] [LP] Le Potier, J.: Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe positif de rang quelconque. Math. Ann.218, 35–53 (1975) · Zbl 0313.32037
[9] [O1] Ohsawa, T.: Vanishing theorems on complete Kähler manifolds. Publ. Res. Inst. Math. Sci.,20, 21–38 (1984) · Zbl 0568.32018
[10] [O2] Ohsawa, T.: On the extension of holomorphic functions 2. Publ. Res. Inst. Math. Sci.24, 265–275 (1988) · Zbl 0653.32012
[11] [O-T] Ohsawa, T., Takegoshi, K.: On the extension ofL 2 holomorphic functions. Math. Z.195, 197–204 (1987) · Zbl 0625.32011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.