×

zbMATH — the first resource for mathematics

Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. (English) Zbl 0810.35089
From the introduction: We study the following system of partial differential equations, which is called the Vlasov-Poisson system \[ {\partial\over {\partial t}} f(t,x,v)+ v{\partial \over {\partial x}} f(t,x,v)+ E(t,x) {\partial\over {\partial v}} f(t,x,v)=0,\;E(t,x)= \gamma\int_{\mathbb{R}^ n} {{x-y} \over {| x-y|^ n}} \rho(t,y) dy,\tag{1} \] where \(\rho(t,x):= \int_{\mathbb{R}^ n} f(t,x,v)dv\), \(t\geq 0\), \(x,v\in \mathbb{R}^ n\), \(\gamma=\pm 1\), \(f|_{t=0}= \varphi\).
We denote this system by (VP). The function \(f\) describes the development in time of a particle-distribution in the phase-space \(\mathbb{R}^ n \times\mathbb{R}^ n\). The motion of the particles is, via Vlasov’s equation (1) determined by \(E\), which is a Newtonian force (attracting) for \(\gamma=-1\) and a Coulomb force (repulsing) for \(\gamma=1\). \(E\) at the time \(t\) is, via Poisson’s equation, determined by the particle- distribution at \(t\), so that the problem is nonlinear. The distribution at time 0 is given by \(\varphi\).

MSC:
35Q35 PDEs in connection with fluid mechanics
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bardos, C; Degond, P; Bardos, C; Degond, P, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, C.R. acad. sci. Paris Sér. I math., Ann. inst. H. Poincaré anal. non linéaire, 2, 101-118, (1985) · Zbl 0593.35076
[2] Batt, J, Fixpunktprobleme bei partiellen differentialgleichungen im zusammenhang mit dem statistischen anfangswertproblem der stellardynamik, Dissertation, (1962), Aachen
[3] Batt, J, Ein existenzbeweis für die Vlasov-gleichung der stellardynamik bei gemittelter dichte, Arch. rational mech. anal., 13, 296-308, (1963) · Zbl 0118.46601
[4] Batt, J, Global symmetric solutions of the initial value problem of stellar dynamics, J. differential equations, 25, 342-364, (1977) · Zbl 0366.35020
[5] Batt, J, Recent developments in the mathematical investigation of the initial value problem of stellar dynamics and plasmaphysics, Ann. nuclear energy, 7, 213-217, (1980)
[6] {\scJ. Batt}, Unpublished paper, München, 1989.
[7] Dieudonné, J, Treatise on analysis, Vol. II, (1970), New York · Zbl 0202.04901
[8] Hartman, P, Ordinary differential equations, (1964), New York · Zbl 0125.32102
[9] Horst, E, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation I, Math. meth. appl. sci., 3, 229-248, (1981) · Zbl 0463.35071
[10] Horst, E, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II, Math. meth. appl. sci., 4, 19-32, (1982) · Zbl 0485.35079
[11] Kurth, R, Das anfangswertproblem der stellardynamik, Z. astrophys., 30, 213-229, (1952) · Zbl 0046.23804
[12] Pfaffelmoser, K, Globale Lösungen des dreidimensionalen Vlasov-Poisson systems, Dissertation, (1989), München · Zbl 0722.35090
[13] Schaeffer, J, Global existence for the Poisson-Vlasov system with nearly symmetric data, J. differential equations, 69, 111-148, (1987) · Zbl 0642.35058
[14] Ukai, T; Okabe, S, On classical solutions in the large in time of two-dimensional Vlasov’s equation, Osaka J. math., 15, 245-261, (1978) · Zbl 0405.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.