zbMATH — the first resource for mathematics

Patchworking algebraic curves disproves the Ragsdale conjecture. (English) Zbl 0876.14017
This paper exposes in a clear way the combinatorial aspects of Oleg Viro’s technique of “patchworking” algebraic curves, and of one of its main applications: the disproval of the Ragsdale conjecture on the topology of real algebraic curves.
Reviewer: G.Bolondi (Povo)

14H25 Arithmetic ground fields for curves
14H45 Special algebraic curves and curves of low genus
Full Text: DOI
[1] V. I. Arnold, On the location of ovals of real algebraic plane curves, involutions on four-dimensional smooth manifolds, and the arithmetic of integral quadratic forms,Funktsional. Anal. Prilozhen. 5 (1971), 1–9 (in Russian); English translation inFunctional Anal. Appl. 5 (1971), 169–176. · Zbl 0246.17008
[2] D. A. Gudkov and G. A. Utkin, The topology of curves of degree 6 and surfaces of degree 4,lichen. Zap. Gorkov. Univ. 87, (1969) (in Russian) 14–20 and 154–176; English transi, in Amer. Math. Soc. Transi. 112, Series 2. ”Nine Papers on Hilbert’s 16th Problem” (1978), 9–14 and 123–140.
[3] D. A. Gudkov and A. D. Krakhnov, On the periodicity of the Euler characteristic of real algebraic (M - l)-mani- folds,Funktsional. Anal. Prilozhen. 7 (1973), 15–19; (in Russian); English translation inFunctional Anal. Appl. 7 (1973), 98–103. · Zbl 0285.14011
[4] B. Haas, Les multilucarnes: Nouveaux contre-exemples à la conjecture de Ragsdale, C.R. Acad. Sci. Paris (in press). · Zbl 0856.14020
[5] A. Harnack, Über Vieltheiligkeit der ebenen algebraischen Curven,Math. Ann. 10 (1876), 189–199. · JFM 08.0317.04
[6] D. Hilbert, Über die reellen Züge algebraischen Curven,Math. Ann. 38 (1891), 115–138. · JFM 23.0753.02
[7] D. Hilbert, Mathematische Probleme,Arch. Math. Phys. 3 (1901), 213–237.
[8] I. Itenberg, Contre-exemples à la conjecture de Ragsdale,C. R. Acad. Sci. Paris (Série I) 317 (1993), 277–282. · Zbl 0787.14040
[9] V. M. Kharlamov, New congruences for the Euler characteristic ofreal algebraicvarieties,Funktsional. Anal. Prilozhen. 7 (1973), 74–78 (in Russian); English translation inFunctional Anal. Appl. 7 (1973), 147–150.
[10] I.Newton, Enumeratiolinearumtertii ordinis, London (1704).
[11] I. Petrovsky, Sur la topologie des courbes réelles et algébriques,C. R. Acad. Sci. Paris 197 (1933), 1270–1272.
[12] I. Petrovsky, On the topology of real plane algebraic curves,Ann. Math. 39 (1938), 187–209.
[13] J.-J. Risler, Construction d’hypersurfaces réelles (d’aprè s Viro),Séminaire N. Bourbaki (1992-93), no. 763.
[14] V. Ragsdale, On the arrangement of the real branches of plane algebraic curves,Am. J. Math. 28 (1906), 377–404. · JFM 37.0595.03
[15] V. A. Rokhlin, Congruences modulo 16 in Hilbert’s sixteenth problem,Funktsional. Anal. Prilozhen. 6 (1972), 58–64 (in Russian); English translation inFunctional Anal. Appl. 6 (1972), 301–306.
[16] O. Ya. Viro, Curves of degree 7, curves of degree 8 and the Ragsdale conjecture,Dokl. Akad. Nauk SSSR 254 (1980), 1305–1310 (in Russian); English translation inSoviet Math. Dokl. 22 (1980), 566–570.
[17] O. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7,Lecture Notes in Math. 1060, NewYork: Springer-Verlag, (1984);pp. 187–200. · Zbl 0576.14031
[18] O. Ya. Viro, Plane real algebraic curves: constructions with controlled topology,Algebra Analiz 1(1989), 1–73 (in Russian); English translation inLeningrad Math. J. 1 (5) (1990), 1059–1134.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.