×

zbMATH — the first resource for mathematics

Initial-boundary value problems for the Boltzmann equation. (English) Zbl 0895.76082
The author extends some recent results on the existence of solution for the initial-boundary value problem for nonlinear Boltzmann equation.
MSC:
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cercignani C., Mathematical Methods in Kinetic Theory,, 2. ed. (1990) · Zbl 0726.76083
[2] Cercignani C., The Boltzmann Equation and its Applications (1987) · Zbl 0646.76001
[3] Cercignani C., The Mathematical Theory of Diluted Gases (1994)
[4] Guiraud J. P., Tlkories cine’tiques classiques et re’lativistes pp 29– (1975)
[5] DOI: 10.3792/pjaa.53.3 · Zbl 0382.35047
[6] DOI: 10.1016/S0168-2024(08)70128-0
[7] DOI: 10.3792/pjaa.56.12 · Zbl 0462.76077
[8] DOI: 10.2307/1971423 · Zbl 0698.45010
[9] DOI: 10.1007/BF01837113 · Zbl 0777.76084
[10] DOI: 10.1007/BF02102064 · Zbl 0733.76063
[11] DOI: 10.1007/BF00375163 · Zbl 0705.76070
[12] Cercignani C., Rend. Mat. Appl. 10 pp 77– (1990)
[13] Arkeryd L., Studies in Appl. Math. 87 pp 283– (1992)
[14] Lions P. L., Journal of Mathematics of Kyoto University 34 pp 391– (1994)
[15] DOI: 10.1007/BF00383222 · Zbl 0789.76075
[16] Darrozds J., C.R.A.S. Paris 262 pp 1368– (1966)
[17] DOI: 10.1080/00411457108231440 · Zbl 0288.76041
[18] DOI: 10.1080/00411457208231462
[19] Truesdell C., Fundamentals of Mazwell’s Kinetic Theory of a Simple Monatomic Gas (1980)
[20] Arkeryd L., Journal Stat. Phys. (1995)
[21] Lions P. L., Cahiers de Mathkmatiques de la dkcision (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.