×

zbMATH — the first resource for mathematics

Geometric construction of crystal bases. (English) Zbl 0901.17006
Let \({\mathfrak g}\) denote a complex semisimple Lie algebra. G. Lusztig has constructed a basis (called the canonical basis) of \(U_q^-({\mathfrak g})\) by considering perverse sheaves on quiver varieties [J. Am. Math. Soc. 3, 447-498 (1990; Zbl 0703.17008)]. In this paper the authors give an example of such a simple perverse sheaf whose singular support is not irreducible. The example is for type \(A_5\). It gives a negative answer to a problem posed by G. Lusztig in [J. Am. Math. Soc. 4, 365-421 (1991; Zbl 0738.17011)].
The authors proceed to establish a connection to a conjecture by D. Kazhdan and G. Lusztig [Adv. Math. 38, 222-228 (1980; Zbl 0458.20035)] on the characteristic variety of the regular holonomic \({\mathfrak D}\)-module associated to a highest weight module for \({\mathfrak g}\). This conjecture says that for type \(A\) such varieties are always irreducible. Here the authors prove this conjecture for type \(A_n\), \(n<7\), and give an example which shows that it fails for type \(A_7\).

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
20G05 Representation theory for linear algebraic groups
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] D. Barlet and M. Kashiwara, Le réseau \(L^ 2\) d’un système holonome régulier , Invent. Math. 86 (1986), no. 1, 35-62. · Zbl 0598.32014
[2] A. A. Beĭ linson, J. Bernstein, and P. Deligne, Faisceaux pervers , Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171. · Zbl 0536.14011
[3] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry , Birkhäuser Boston Inc., Boston, MA, 1997. · Zbl 0879.22001
[4] V. Ginzburg, Lagrangian construction of the enveloping algebra \(U(\mathrm sl_ n)\) , C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 12, 907-912. · Zbl 0749.17009
[5] V. Ginzburg, N. Reshetikhin, and E. Vasserot, Quantum groups and flag varieties , Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992), Contemp. Math., vol. 175, Amer. Math. Soc., Providence, RI, 1994, pp. 101-130. · Zbl 0818.17018
[6] V. Ginzburg and E. Vasserot, Langlands reciprocity for affine quantum groups of type \(A_ n\) , Internat. Math. Res. Notices (1993), no. 3, 67-85. · Zbl 0785.17014
[7] I. Grojnowski and G. Lusztig, A comparison of bases of quantized enveloping algebras , Linear algebraic groups and their representations (Los Angeles, CA, 1992), Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 11-19. · Zbl 1009.17502
[8] V. G. Kac, Infinite-dimensional Lie algebras , Cambridge University Press, Cambridge, 1990. · Zbl 0716.17022
[9] M. Kashiwara, On crystal bases of the \(q\)-analogue of universal enveloping algebras , Duke Math. J. 63 (1991), no. 2, 465-516. · Zbl 0739.17005
[10] M. Kashiwara, Global crystal bases of quantum groups , Duke Math. J. 69 (1993), no. 2, 455-485. · Zbl 0774.17018
[11] M. Kashiwara, The crystal base and Littelmann’s refined Demazure character formula , Duke Math. J. 71 (1993), no. 3, 839-858. · Zbl 0794.17008
[12] M. Kashiwara, On crystal bases , Representations of groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155-197. · Zbl 0851.17014
[13] M. Kashiwara and P. Schapira, Sheaves on Manifolds , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. · Zbl 0709.18001
[14] M. Kashiwara and T. Tanisaki, The characteristic cycles of holonomic systems on a flag manifold related to the Weyl group algebra , Invent. Math. 77 (1984), no. 1, 185-198. · Zbl 0611.22008
[15] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras , Invent. Math. 53 (1979), no. 2, 165-184. · Zbl 0499.20035
[16] D. Kazhdan and G. Lusztig, A topological approach to Springer’s representations , Adv. in Math. 38 (1980), no. 2, 222-228. · Zbl 0458.20035
[17] G. Lusztig, Character sheaves. I , Adv. in Math. 56 (1985), no. 3, 193-237. · Zbl 0586.20018
[18] G. Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra , J. Amer. Math. Soc. 3 (1990), no. 1, 257-296. JSTOR: · Zbl 0695.16006
[19] G. Lusztig, Canonical bases arising from quantized enveloping algebras , J. Amer. Math. Soc. 3 (1990), no. 2, 447-498. JSTOR: · Zbl 0703.17008
[20] G. Lusztig, Canonical bases arising from quantized enveloping algebras. II , Progr. Theoret. Phys. Suppl. (1990), no. 102, 175-201 (1991). · Zbl 0776.17012
[21] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras , J. Amer. Math. Soc. 4 (1991), no. 2, 365-421. JSTOR: · Zbl 0738.17011
[22] G. Lusztig, Introduction to quantum groups , Progress in Mathematics, vol. 110, Birkhäuser Boston Inc., Boston, MA, 1993. · Zbl 0788.17010
[23] H. Nakajima, Gauge theory on resolutions of simple singularities and simple Lie algebras , Internat. Math. Res. Notices (1994), no. 2, 61-74. · Zbl 0832.58007
[24] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , Duke Math. J. 76 (1994), no. 2, 365-416. · Zbl 0826.17026
[25] Y. Saito, PBW basis of quantized universal enveloping algebras , Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 209-232. · Zbl 0812.17013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.