×

zbMATH — the first resource for mathematics

Types and Hecke algebras for principal series representations of split reductive \(p\)-adic groups. (English) Zbl 0903.22009
In [The admissible dual of \(GL(N)\) via compact open subgroups. Annals of Mathematics Studies. 129 (Princeton 1993; Zbl 0787.22016)] C. Bushnell and P. Kutzko described the admissible dual of \(G=GL(F)\) for a \(p\)-adic field \(F\) in terms of “types”, that is, in terms of certain finite dimensional representations of certain compact open subgroups. If a representation \(\pi\) contains a type it can by Frobenius reciprocity be found in the representation induced from that type. This is the way that in loc. cit. all representations of \(G\) are constructed. The irreducible representations containing a given type are given by the simple modules of the corresponding Hecke algebra so that the classification proceeds in terms of Hecke modules then. In the paper under consideration types in the above sense are constructed and given explicitly for \(G\) being any split reductive group and \(\pi\) being a principal series representation. The corresponding Hecke algebras are described explicitly. In addition, it is described how parabolic induction and Jaquet restriction and questions about square integrability can be transferred to this context.

MSC:
22E50 Representations of Lie and linear algebraic groups over local fields
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] J. D. ADLER , Refined anisotropic K-types and supercuspidal representations . Pacific Journal of Mathematics, to appear. Zbl 0924.22015 · Zbl 0924.22015
[2] J. D. ADLER and A. ROCHE , An intertwining result for p-adic groups . Preprint. · Zbl 1160.22304
[3] H. BASS , Algebraic K-Theory , New York, 1968 . MR 40 #2736 | Zbl 0174.30302 · Zbl 0174.30302
[4] J. N. BERNSTEIN , Le centre de Bernstein (rédigé par P. Deligne). (Représentations des groupes réductifs sur un corps local, Paris, 1984 , pp. 1-32). MR 86e:22028 | Zbl 0599.22016 · Zbl 0599.22016
[5] J. N. BERNSTEIN and A. V. ZELEVINSKY , Induced representations of reductive p-adic groups I (Ann. Scient. Éc. Norm. Sup., (4), Vol. 10, 1977 , pp. 441-472). Numdam | MR 58 #28310 | Zbl 0412.22015 · Zbl 0412.22015
[6] A. BOREL , Admissible representations of a semisimple group with vectors fixed under an Iwahori subgroup (Invent. Math., Vol. 35, 1976 , pp. 233-259). MR 56 #3196 | Zbl 0334.22012 · Zbl 0334.22012
[7] N. BOURBAKI , Groupes et Algèbres de Lie . Chap. IV, V, VI. Hermann, 1968 . · Zbl 0186.33001
[8] F. BRUHAT and J. TITS , Groupes réductifs sur un corps local I . Données radicielles valuées (Publ. Math. I.H.E.S., Vol. 42, 1972 , pp. 1-251). Numdam | MR 48 #6265 | Zbl 0254.14017 · Zbl 0254.14017
[9] F. BRUHAT and J. TITS , Groupes réductifs sur un corps local II . Schémas en groupes (Publ. Math. I.H.E.S., Vol. 60, 1984 , pp. 1-184). Numdam | Zbl 0597.14041 · Zbl 0597.14041
[10] C. J. BUSHNELL and P. C. KUTZKO , The admissible dual of GL(N) via compact open subgroups . Annals of Math. Studies 129, Princeton University Press, 1993 . MR 94h:22007 | Zbl 0787.22016 · Zbl 0787.22016
[11] C. J. BUSHNELL and P. C. KUTZKO , Semisimple types for GL(N) . Preprint. · Zbl 0835.22009
[12] C. J. BUSHNELL and P. C. KUTZKO , The admissible dual of SL(N) I (Ann. Scient. Éc. Norm. Sup., (4), Vol. 26, 1993 , pp. 261-279). Numdam | MR 94a:22033 | Zbl 0787.22017 · Zbl 0787.22017
[13] C. J. BUSHNELL and P. C. KUTZKO , Smooth representations of reductive p-adic groups : structure theory via types . Preprint, February 1996 . · Zbl 0911.22014
[14] P. CARTIER , Representations of p-adic groups : A survey. Automorphic forms, representations and L-functions (A. Borel and W. Casselman, ed.). Proc Symposia Pure Math. XXXIII, (Providence, 1979 ), pp. 111-156. MR 81e:22029 | Zbl 0421.22010 · Zbl 0421.22010
[15] W. CASSELMAN , The unramified principal series of p-adic groups I (Comp. Math., Vol. 40, 1980 , pp. 387-406). Numdam | MR 83a:22018 | Zbl 0472.22004 · Zbl 0472.22004
[16] F. DIGNE and J. MICHEL , Representations of finite groups of Lie type . Cambridge University Press, 1991 . MR 92g:20063 | Zbl 0815.20014 · Zbl 0815.20014
[17] D. GOLDSTEIN , Hecke algebra isomorphisms for tamely ramified characters . Ph.D. thesis, University of Chicago, 1990 .
[18] R. B. HOWLETT and G. I. LEHRER , Induced cuspidal representations and generalised Hecke rings (Inv. Math., Vol. 58, 1980 , pp. 37-64). MR 81j:20017 | Zbl 0435.20023 · Zbl 0435.20023
[19] R. HOWE with the collaboration of A. MOY, Harish-Chandra homomorphisms for p-adic groups . Regional Conference Series in Mathematics, no. 59. Providence, 1985 . MR 87h:22023 | Zbl 0593.22014 · Zbl 0593.22014
[20] R. HOWE , Principal series of GLn over p-adic fields (Trans. Am. Math. Soc., Vol. 177, 1973 , pp. 275-286). MR 48 #6324 | Zbl 0257.22018 · Zbl 0257.22018
[21] J. E. HUMPHREYS , Linear Algebraic Groups . Springer-Verlag, New York, 1975 . MR 53 #633 | Zbl 0325.20039 · Zbl 0325.20039
[22] J. E. HUMPHREYS , Reflection groups and Coxeter groups . Cambridge University Press, 1990 . MR 92h:20002 | Zbl 0725.20028 · Zbl 0725.20028
[23] N. IWAHORI and H. MATSUMOTO , On Some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups (Publ. Math. I.H.E.S., Vol. 25, 1965 , pp. 5-48). Numdam | MR 32 #2486 | Zbl 0228.20015 · Zbl 0228.20015
[24] D. KAZHDAN and G. LUSZTIG , Proof of the Deligne-Langlands conjecture for Hecke algebras (Invent. Math., Vol. 87, 1987 , pp. 153-215). MR 88d:11121 | Zbl 0613.22004 · Zbl 0613.22004
[25] R. P. LANGLANDS , On the classification of representations of real algebraic groups . Representation Theory and Harmonic Analysis on Semisimple Lie Groups (P. J. Sally Jr. and D. Vogan, eds.) Mathematical Surveys and Monographs 31, 101-170. Amer. Math. Soc., Providence, Rhode Island, 1989 . MR 91e:22017 | Zbl 0741.22009 · Zbl 0741.22009
[26] G. LUSZTIG , Classification of unipotent representations of simple p-adic groups (Internat. Math. Res. Notices No. 11, 1995 , pp. 517-589). arXiv | MR 98b:22034 | Zbl 0872.20041 · Zbl 0872.20041
[27] L. E. MORRIS , Tamely ramified intertwining algebras (Invent. Math., Vol. 114, 1993 , pp. 1-54). MR 94g:22035 | Zbl 0854.22022 · Zbl 0854.22022
[28] L. E. MORRIS , Level zero G-types . Preprint, 1994 .
[29] A. MOY and G. PRASAD , Jacquet functors and unrefined minimal K-types (Comm. Math. Helv., Vol. 71, 1996 , pp. 98-121). MR 97c:22021 | Zbl 0860.22006 · Zbl 0860.22006
[30] M. REEDER , Nonstandard intertwining operators and the structure of unramified principal series representations (Forum. Math., Vol. 9, no. 4, 1997 , pp. 457-516). Article | MR 98j:22028 | Zbl 0882.22020 · Zbl 0882.22020
[31] G. SANJE-MPACKO , Ph.D. thesis, Rutgers University, 1994 .
[32] T. A. SPRINGER , Reductive Groups. Automorphic forms, representations and L-functions (A. Borel and W. Casselman, ed.). Proc. Symposia in Pure Math. XXXIII, (Providence, 1979 ), pp. 3-27. MR 80h:20062 | Zbl 0416.20034 · Zbl 0416.20034
[33] T. A. SPRINGER and R. STEINBERG , Conjugacy Classes (Lecture Notes in Math., Vol. 131, Springer-Verlag, Berlin, 1970 , pp. 167-266). MR 42 #3091 | Zbl 0249.20024 · Zbl 0249.20024
[34] R. STEINBERG , Endomorphisms of linear algebraic groups (Mem. Amer. Math. Soc., No. 80, 1968 ). MR 37 #6288 | Zbl 0164.02902 · Zbl 0164.02902
[35] R. STEINBERG , Torsion in reductive groups (Adv. Math., Vol. 15, 1975 , pp. 63-92). MR 50 #7369 | Zbl 0312.20026 · Zbl 0312.20026
[36] M. TADIC , Representations of p-adic symplectic groups (Comp. Math., Vol. 90, 1994 , pp. 123-181). Numdam | MR 95a:22025 | Zbl 0797.22008 · Zbl 0797.22008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.