Argyros, Ioannis K.; Behl, Ramandeep; González, Daniel; Motsa, Sandile S. Ball convergence for combined three-step methods under generalized conditions in Banach space. (English) Zbl 1513.65161 Stud. Univ. Babeș-Bolyai, Math. 65, No. 1, 127-137 (2020). MSC: 65J15 47J25 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., Stud. Univ. Babeș-Bolyai, Math. 65, No. 1, 127--137 (2020; Zbl 1513.65161) Full Text: DOI
Argyros, Ioannis K.; Behl, Ramandeep; González, Daniel; Motsa, S. S. Local convergence for multistep high order methods under weak conditions. (English) Zbl 1452.65097 Appl. Math. 47, No. 2, 293-304 (2020). MSC: 65J15 47J25 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., Appl. Math. 47, No. 2, 293--304 (2020; Zbl 1452.65097) Full Text: DOI
Argyros, Ioannis K.; Behl, Ramandeep; Motsa, S. S. Ball convergence for a two-step fourth order derivative-free method for nonlinear equations. (English) Zbl 1433.65089 Appl. Math. 46, No. 2, 253-263 (2019). MSC: 65H05 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., Appl. Math. 46, No. 2, 253--263 (2019; Zbl 1433.65089) Full Text: DOI
Behl, Ramandeep; Amat, S.; Magreñán, Á. A.; Motsa, S. S. An efficient optimal family of sixteenth order methods for nonlinear models. (English) Zbl 1434.65078 J. Comput. Appl. Math. 354, 271-285 (2019). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 65H20 65H05 65H10 PDFBibTeX XMLCite \textit{R. Behl} et al., J. Comput. Appl. Math. 354, 271--285 (2019; Zbl 1434.65078) Full Text: DOI
Maroju, Prashanth; Magreñán, Á. Alberto; Motsa, Sandile S.; Sarría, Ínigo Second derivative free sixth order continuation method for solving nonlinear equations with applications. (English) Zbl 1407.65056 J. Math. Chem. 56, No. 7, 2099-2116 (2018). MSC: 65H05 PDFBibTeX XMLCite \textit{P. Maroju} et al., J. Math. Chem. 56, No. 7, 2099--2116 (2018; Zbl 1407.65056) Full Text: DOI
Behl, Ramandeep; Alshomrani, Ali Saleh; Motsa, S. S. An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. (English) Zbl 1407.65050 J. Math. Chem. 56, No. 7, 2069-2084 (2018). MSC: 65H05 PDFBibTeX XMLCite \textit{R. Behl} et al., J. Math. Chem. 56, No. 7, 2069--2084 (2018; Zbl 1407.65050) Full Text: DOI
Bhalla, S.; Kumar, S.; Argyros, I. K.; Behl, Ramandeep; Motsa, S. S. Higher-order modification of Steffensen’s method for solving system of nonlinear equations. (English) Zbl 1405.65072 Comput. Appl. Math. 37, No. 2, 1913-1940 (2018). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 65H10 65Y20 PDFBibTeX XMLCite \textit{S. Bhalla} et al., Comput. Appl. Math. 37, No. 2, 1913--1940 (2018; Zbl 1405.65072) Full Text: DOI
Argyros, Ioannis K.; Behl, Ramandeep; Motsa, S. S. Expanding the applicability of a fifth-order convergent method in a Banach space under weak conditions. (English) Zbl 1415.65122 Appl. Math. 45, No. 1, 91-101 (2018). MSC: 65J15 47J05 47J25 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., Appl. Math. 45, No. 1, 91--101 (2018; Zbl 1415.65122) Full Text: DOI
Behl, Ramandeep; Cordero, Alicia; Motsa, Sandile S.; Torregrosa, Juan R. Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations. (English) Zbl 1390.37077 Nonlinear Dyn. 91, No. 1, 81-112 (2018). MSC: 37F10 65H04 PDFBibTeX XMLCite \textit{R. Behl} et al., Nonlinear Dyn. 91, No. 1, 81--112 (2018; Zbl 1390.37077) Full Text: DOI Link
Behl, Ramandeep; Cordero, Alicia; S. Motsa, Sandile; Torregrosa, Juan R. An eighth-order family of optimal multiple root finders and its dynamics. (English) Zbl 1402.65042 Numer. Algorithms 77, No. 4, 1249-1272 (2018). Reviewer: Anton Iliev (Plovdiv) MSC: 65H05 PDFBibTeX XMLCite \textit{R. Behl} et al., Numer. Algorithms 77, No. 4, 1249--1272 (2018; Zbl 1402.65042) Full Text: DOI Link
Kumar, Abhimanyu; Maroju, P.; Behl, R.; Gupta, D. K.; Motsa, S. S. A family of higher order iterations free from second derivative for nonlinear equations in \(\mathbb{R}\). (English) Zbl 1376.65081 J. Comput. Appl. Math. 330, 676-694 (2018). MSC: 65H05 PDFBibTeX XMLCite \textit{A. Kumar} et al., J. Comput. Appl. Math. 330, 676--694 (2018; Zbl 1376.65081) Full Text: DOI
Behl, Ramandeep; Cordero, Alicia; Motsa, Sandile S.; Torregrosa, Juan R. Stable high-order iterative methods for solving nonlinear models. (English) Zbl 1411.65074 Appl. Math. Comput. 303, 70-88 (2017). MSC: 65H10 PDFBibTeX XMLCite \textit{R. Behl} et al., Appl. Math. Comput. 303, 70--88 (2017; Zbl 1411.65074) Full Text: DOI Link
Bég, O. Anwar; Motsa, S. S.; Bég, T. A.; Abbas, A. J.; Kadir, A.; Sohail, Ayesha Numerical study of nonlinear heat transfer from a wavy surface to a high permeability medium with pseudo-spectral and smoothed particle methods. (English) Zbl 1397.76100 Int. J. Appl. Comput. Math. 3, No. 4, 3593-3613 (2017). MSC: 76M22 76M28 76S05 80A20 PDFBibTeX XMLCite \textit{O. A. Bég} et al., Int. J. Appl. Comput. Math. 3, No. 4, 3593--3613 (2017; Zbl 1397.76100) Full Text: DOI Link
Argyros, Ioannis. K.; Behl, Ramandeep; Motsa, S. S. Ball convergence for a two step method with memory at least of order \(2+\sqrt{2}\). (English) Zbl 1413.65221 J. Nonlinear Anal. Optim. 8, No. 1, 49-61 (2017). MSC: 65J15 PDFBibTeX XMLCite \textit{Ioannis. K. Argyros} et al., J. Nonlinear Anal. Optim. 8, No. 1, 49--61 (2017; Zbl 1413.65221) Full Text: Link
Argyros, Ioannis K.; Behl, Ramandeep; Motsa, S. S. Ball convergence for a family of quadrature-based methods for solving equations in Banach space. (English) Zbl 1404.65047 Int. J. Comput. Methods 14, No. 2, Article ID 1750017, 11 p. (2017). MSC: 65J15 47J05 47J25 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., Int. J. Comput. Methods 14, No. 2, Article ID 1750017, 11 p. (2017; Zbl 1404.65047) Full Text: DOI
Behl, Ramandeep; Argyros, Ioannis K.; Motsa, S. S. Improved Chebyshev-Halley family of methods with seventh and eighth order of convergence for simple roots. (English) Zbl 1380.65087 S\(\vec{\text{e}}\)MA J. 74, No. 4, 643-665 (2017). MSC: 65H05 PDFBibTeX XMLCite \textit{R. Behl} et al., S\(\vec{\text{e}}\)MA J. 74, No. 4, 643--665 (2017; Zbl 1380.65087) Full Text: DOI
Behl, Ramandeep; Cordero, Alicia; Motsa, Sandile S.; Torregrosa, Juan R. A new efficient and optimal sixteenth-order scheme for simple roots of nonlinear equations. (English) Zbl 1413.65199 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60(108), No. 2, 127-140 (2017). Reviewer: Hang Lau (Montreal) MSC: 65H10 65D05 PDFBibTeX XMLCite \textit{R. Behl} et al., Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60(108), No. 2, 127--140 (2017; Zbl 1413.65199)
Argyros, Ioannis K.; Behl, Ramandeep; Motsa, S. S. Unifying semilocal and local convergence of Newton’s method on Banach space with a convergence structure. (English) Zbl 1358.65035 Appl. Numer. Math. 115, 225-234 (2017). MSC: 65J15 47J25 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., Appl. Numer. Math. 115, 225--234 (2017; Zbl 1358.65035) Full Text: DOI
Argyros, Ioannis K.; Behl, Ramandeep; Motsa, Sandile S. Local convergence analysis of an eighth order scheme using hypothesis only on the first derivative. (English) Zbl 1461.65098 Algorithms (Basel) 9, No. 4, Paper No. 65, 14 p. (2016). MSC: 65J15 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., Algorithms (Basel) 9, No. 4, Paper No. 65, 14 p. (2016; Zbl 1461.65098) Full Text: DOI OA License
Behl, Ramandeep; Argyros, Ioannis K.; Motsa, S. S. A new highly efficient and optimal family of eighth-order methods for solving nonlinear equations. (English) Zbl 1410.65145 Appl. Math. Comput. 282, 175-186 (2016). MSC: 65H05 PDFBibTeX XMLCite \textit{R. Behl} et al., Appl. Math. Comput. 282, 175--186 (2016; Zbl 1410.65145) Full Text: DOI
Argyros, Ioannis K.; Behl, Ramandeep; Motsa, S. S. Newton’s method on generalized Banach spaces. (English) Zbl 1386.65149 J. Complexity 35, 16-28 (2016). MSC: 65J15 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., J. Complexity 35, 16--28 (2016; Zbl 1386.65149) Full Text: DOI
Behl, Ramandeep; Cordero, Alicia; Motsa, Sandile S.; Torregrosa, Juan R.; Kanwar, Vinay An optimal fourth-order family of methods for multiple roots and its dynamics. (English) Zbl 1339.65065 Numer. Algorithms 71, No. 4, 775-796 (2016). Reviewer: Anton Iliev (Plovdiv) MSC: 65H04 PDFBibTeX XMLCite \textit{R. Behl} et al., Numer. Algorithms 71, No. 4, 775--796 (2016; Zbl 1339.65065) Full Text: DOI
Argyros, Ioannis K.; Behl, Ramandeep; Motsa, S. S. Local convergence of an efficient high convergence order method using hypothesis only on the first derivative. (English) Zbl 1461.65099 Algorithms (Basel) 8, No. 4, 1076-1087 (2015). MSC: 65J15 47J05 47J25 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., Algorithms (Basel) 8, No. 4, 1076--1087 (2015; Zbl 1461.65099) Full Text: DOI OA License
Argyros, Ioannis K.; Behl, Ramandeep; Motsa, S. S. Local convergence of an optimal eighth order method under weak conditions. (English) Zbl 1461.65072 Algorithms (Basel) 8, No. 3, 645-655 (2015). MSC: 65H05 PDFBibTeX XMLCite \textit{I. K. Argyros} et al., Algorithms (Basel) 8, No. 3, 645--655 (2015; Zbl 1461.65072) Full Text: DOI OA License
Behl, Ramandeep; Cordero, Alicia; Motsa, Sandile S.; Torregrosa, Juan R. Construction of fourth-order optimal families of iterative methods and their dynamics. (English) Zbl 1410.65146 Appl. Math. Comput. 271, 89-101 (2015). MSC: 65H05 39B12 PDFBibTeX XMLCite \textit{R. Behl} et al., Appl. Math. Comput. 271, 89--101 (2015; Zbl 1410.65146) Full Text: DOI Link
RamReddy, Ch.; Lakshmi Narayana, P. A.; Motsa, S. S. A spectral relaxation method for linear and non-linear stratification effects on mixed convection in a porous medium. (English) Zbl 1410.76433 Appl. Math. Comput. 268, 991-1000 (2015). MSC: 76S05 76R10 76M22 65N99 74F10 PDFBibTeX XMLCite \textit{Ch. RamReddy} et al., Appl. Math. Comput. 268, 991--1000 (2015; Zbl 1410.76433) Full Text: DOI
Behl, Ramandeep; Cordero, Alicia; Motsa, S. S.; Torregrosa, Juan R. On developing fourth-order optimal families of methods for multiple roots and their dynamics. (English) Zbl 1410.65147 Appl. Math. Comput. 265, 520-532 (2015). MSC: 65H05 PDFBibTeX XMLCite \textit{R. Behl} et al., Appl. Math. Comput. 265, 520--532 (2015; Zbl 1410.65147) Full Text: DOI Link
Haroun, Nageeb A. H.; Sibanda, Precious; Mondal, Sabyasachi; Motsa, Sandile S.; Rashidi, Mohammad M. Heat and mass transfer of nanofluid through an impulsively vertical stretching surface using the spectral relaxation method. (English) Zbl 1342.35388 Bound. Value Probl. 2015, Paper No. 161, 16 p. (2015). MSC: 35Q79 76W05 82D80 80A20 80A32 76M22 80M22 PDFBibTeX XMLCite \textit{N. A. H. Haroun} et al., Bound. Value Probl. 2015, Paper No. 161, 16 p. (2015; Zbl 1342.35388) Full Text: DOI OA License
Haroun, Nageeb A.; Sibanda, Precious; Mondal, Sabyasachi; Motsa, Sandile S. On unsteady MHD mixed convection in a nanofluid due to a stretching/shrinking surface with suction/injection using the spectral relaxation method. (English) Zbl 1315.35168 Bound. Value Probl. 2015, Paper No. 24, 17 p. (2015). MSC: 35Q35 76W05 76M22 76T20 80A20 65M70 PDFBibTeX XMLCite \textit{N. A. Haroun} et al., Bound. Value Probl. 2015, Paper No. 24, 17 p. (2015; Zbl 1315.35168) Full Text: DOI OA License
Dzyamko, V. I.; Kozachenko, Yu. V.; Motsa, A. I. Conditions for uniform convergence of trigonometric series representations of \(\varphi\)-sub-Gaussian stochastic processes. (Ukrainian. English summary) Zbl 1289.60059 Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 23, No. 2, 42-50 (2012). MSC: 60G07 PDFBibTeX XMLCite \textit{V. I. Dzyamko} et al., Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 23, No. 2, 42--50 (2012; Zbl 1289.60059)
Dzyamko, V. J.; Kozachenko, Yu. V.; Motsa, A. I. The representation of \(\varphi\)-sub-Gaussian periodic random processes in the form of series. (Ukrainian. English summary) Zbl 1265.60074 Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 23, No. 1, 42-54 (2012). MSC: 60G07 PDFBibTeX XMLCite \textit{V. J. Dzyamko} et al., Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 23, No. 1, 42--54 (2012; Zbl 1265.60074)
Dzyamko, V. J.; Motsa, A. I.; Pashko, A. O. Accuracy in \(L_p(S_d)\) and the reliability of modelling of linear isotropic fields on a sphere. (Ukrainian. English summary) Zbl 1249.60101 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2011, No. 4, 16-19 (2011). MSC: 60G60 62M40 PDFBibTeX XMLCite \textit{V. J. Dzyamko} et al., Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2011, No. 4, 16--19 (2011; Zbl 1249.60101)
Dzyamko, V. J.; Kozachenko, Yu. V.; Motsa, A. I. On construction of models for stochastic processes in Orlicz spaces. (Ukrainian. English summary) Zbl 1249.60061 Prykl. Stat., Aktuarna Finans. Mat. 2010, No. 1-2, 125-134 (2010). MSC: 60G07 PDFBibTeX XMLCite \textit{V. J. Dzyamko} et al., Prykl. Stat., Aktuarna Finans. Mat. 2010, No. 1--2, 125--134 (2010; Zbl 1249.60061)
Motsa, Andtiy Theory of probability and mathematical statistics at Uzhhorod National University. (English) Zbl 1064.01549 Theory Stoch. Process. 9(25), No. 3-4, 132-144 (2003). Reviewer: A. D. Borisenko (Kyïv) MSC: 01A72 01A73 PDFBibTeX XMLCite \textit{A. Motsa}, Theory Stoch. Process. 9(25), No. 3--4, 132--144 (2003; Zbl 1064.01549)
Motsa, A. I. 80th birthday of professor Yurij Petrovithch Studnev. (Ukrainian, English) Zbl 1063.01503 Teor. Jmovirn. Mat. Stat. 58, 107-111 (2003); and Theory Probab. Math. Stat. 68, 117-122 (2003). Reviewer: A. D. Borisenko (Kyïv) MSC: 01A70 60-03 PDFBibTeX XMLCite \textit{A. I. Motsa}, Teor. Ĭmovirn. Mat. Stat. 68, 107--111 (2003; Zbl 1063.01503)
Motsa, A. I. On a problem of random walks. (Ukrainian. English summary) Zbl 0957.60043 Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 4, 121-123 (1999). MSC: 60G50 PDFBibTeX XMLCite \textit{A. I. Motsa}, Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 4, 121--123 (1999; Zbl 0957.60043)
Motsa, A. I. Yurij Petrovych Studnev (to 75 birthday anniversary). (Ukrainian. English summary) Zbl 0967.01015 Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 3, 4-18 (1998). Reviewer: A.D.Borisenko (Kyïv) MSC: 01A70 PDFBibTeX XMLCite \textit{A. I. Motsa}, Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 3, 4--18 (1998; Zbl 0967.01015)
Motsa, A. I. On convergence conditions of distribution of step-sum processes. (Ukrainian) Zbl 0955.60044 Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 2, 71-74 (1997). MSC: 60G50 PDFBibTeX XMLCite \textit{A. I. Motsa}, Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 2, 71--74 (1997; Zbl 0955.60044)
Motsa, Andrei I.; Silvestrov, Dmitrii S. Asymptotics of extremal statistics and functionals of additive type for Markov chains. (English) Zbl 0893.60042 Theory Stoch. Process. 2(18), No. 1-2, 217-224 (1996). Reviewer: Yu.S.Mishura (Kyïv) MSC: 60J10 60F05 60G70 60G17 PDFBibTeX XMLCite \textit{A. I. Motsa} and \textit{D. S. Silvestrov}, Theory Stoch. Process. 2(18), No. 1--2, 217--224 (1996; Zbl 0893.60042)
Velikij, Yu. A.; Motsa, A. I.; Sil’vestrov, D. S. Dual processes and ergodic type theorems for Markov chains in the scheme of series. (English. Russian original) Zbl 0847.60059 Theory Probab. Appl. 39, No. 4, 642-653 (1994); translation from Teor. Veroyatn. Primen. 39, No. 4, 716-730 (1994). Reviewer: R.Grübel (Hannover) MSC: 60J99 60F15 60J35 60J10 PDFBibTeX XMLCite \textit{Yu. A. Velikij} et al., Teor. Veroyatn. Primen. 39, No. 4, 716--730 (1994; Zbl 0847.60059); translation from Teor. Veroyatn. Primen. 39, No. 4, 716--730 (1994)
Motsa, A. I. Limit theorems for times of attainment of fields of conditionally independent indicators. (English. Russian original) Zbl 0800.60012 Lin’kov, Yu. N. (ed.), Theory of random processes and its applications. Kiev: Naukova Dumka. 115-122 (1990). MSC: 60F05 60J05 60K99 PDFBibTeX XMLCite \textit{A. I. Motsa}, in: Теория случайных процессов и ее приложения. Kiev: Naukova Dumka. 115--122 (1990; Zbl 0800.60012)
Didkovskij, I. R.; Sil’vestrov, D. S.; Motsa, A. I. A characterization theorem and a limit theorem for level attainment processes. (English. Russian original) Zbl 0697.60027 Theory Probab. Math. Stat. 39, 47-54 (1989); translation from Teor. Veroyatn. Mat. Stat., Kiev 39, 39-47 (1988). MSC: 60F05 60G17 PDFBibTeX XMLCite \textit{I. R. Didkovskij} et al., Theory Probab. Math. Stat. 39, 47--54 (1989; Zbl 0697.60027); translation from Teor. Veroyatn. Mat. Stat., Kiev 39, 39--47 (1988)
Kaplan, E. I.; Motsa, A. I.; Sil’vestrov, D. S. Limit theorems for additive functionals defined on asymptotically recurrent Markov chains. II. (English. Russian original) Zbl 0539.60070 Theory Probab. Math. Stat. 28, 35-43 (1984); translation from Teor. Veroyatn. Mat. Stat. 28, 31-40 (1983). Reviewer: B.P.Kharlamov MSC: 60G50 60J99 60E10 PDFBibTeX XMLCite \textit{E. I. Kaplan} et al., Theory Probab. Math. Stat. 28, 35--43 (1984; Zbl 0539.60070); translation from Teor. Veroyatn. Mat. Stat. 28, 31--40 (1983)
Kaplan, E. I.; Motsa, A. I.; Sil’vestrov, D. S. Limit theorems for additive functionals defined on asymptotically recurrent Markov chains. I. (English) Zbl 0522.60077 Theory Probab. Math. Stat. 27, 39-54 (1983). MSC: 60J27 60F17 60E07 60J05 60J55 60G17 PDFBibTeX XMLCite \textit{E. I. Kaplan} et al., Theory Probab. Math. Stat. 27, 39--54 (1983; Zbl 0522.60077)
Motsa, A. I. General conditions for convergence in the J-topology for fields of step sums of switchable random variables. (English) Zbl 0519.60052 Theory Probab. Math. Stat. 26, 129-143 (1983). MSC: 60G60 60B10 60F17 PDFBibTeX XMLCite \textit{A. I. Motsa}, Theory Probab. Math. Stat. 26, 129--143 (1983; Zbl 0519.60052)
Motsa, A. I. Limit theorems for stochastically continuous fields with conditionally independent increments. (English) Zbl 0519.60051 Ukr. Math. J. 34, 456-462 (1983). MSC: 60G60 60F17 PDFBibTeX XMLCite \textit{A. I. Motsa}, Ukr. Math. J. 34, 456--462 (1983; Zbl 0519.60051) Full Text: DOI
Motsa, A. I. Moment functions of processes of level attainment for homogeneous locally infinitely divisible processes. (Russian) Zbl 0516.60019 Dokl. Akad. Nauk Ukr. SSR, Ser. A 1983, No. 3, 15-16 (1983). MSC: 60E10 60E07 PDFBibTeX XMLCite \textit{A. I. Motsa}, Dokl. Akad. Nauk Ukr. SSR, Ser. A 1983, No. 3, 15--16 (1983; Zbl 0516.60019)
Motsa, A. I. General conditions of the convergence in the J-topology for fields of step-sums of switched random variables. (Russian) Zbl 0509.60050 Teor. Veroyatn. Mat. Stat. 26, 112-126 (1982). MSC: 60G60 60F17 60B10 PDFBibTeX XML
Motsa, A. I. Limit theorems for stochastically continuous fields with conditionally independent increments. (Russian) Zbl 0509.60049 Ukr. Mat. Zh. 34, No. 5, 565-571 (1982). MSC: 60G60 60F17 PDFBibTeX XMLCite \textit{A. I. Motsa}, Ukr. Mat. Zh. 34, No. 5, 565--571 (1982; Zbl 0509.60049)
Kaplan, E. I.; Motsa, A. I.; Sil’vestrov, D. S. Limit theorems for additive functionals defined on asymptotically reciprocal Markov chains. I. (Russian) Zbl 0499.60072 Teor. Veroyatn. Mat. Stat. 27, 34-51 (1982). MSC: 60J05 60J55 60B10 PDFBibTeX XML
Motsa, A. I. General conditions of convergence in the J-topology of fields of step sums of random variables subjected to switching. (Russian) Zbl 0483.60044 Dokl. Akad. Nauk Ukr. SSR, Ser. A 1981, No. 11, 29-32 (1981). MSC: 60G60 PDFBibTeX XMLCite \textit{A. I. Motsa}, Dokl. Akad. Nauk Ukr. SSR, Ser. A 1981, No. 11, 29--32 (1981; Zbl 0483.60044)