×

Found 120 Documents (Results 1–100)

Necessary and sufficient condition for the Lamperti invariance principle. (Ukrainian, English) Zbl 1050.60040

Teor. Jmovirn. Mat. Stat. 68, 115-124 (2003); translation in Theory Probab. Math. Stat. 68, 127-138 (2004).
MSC:  60F17 60B12
PDFBibTeX XMLCite

Hölderian invariance principle for triangular arrays of random variables. (Principe d’invariance Hölderien pour des tableau triangulaires de variables aléatoires.) (English. French original) Zbl 1053.60031

Lith. Math. J. 43, No. 4, 423-438 (2003); translation from Liet. Mat. Rink 43, No. 4, 513-532 (2003).
MSC:  60F17 62F40
PDFBibTeX XMLCite
Full Text: DOI

On the Hölderian functional central limit theorem for i. i. d. random elements in Banach space. (English) Zbl 1024.60016

Berkes, I. (ed.) et al., Limit theorems in probability and statistics. Fourth Hungarian colloquium on limit theorems in probability and statistics, Balatonlelle, Hungary, June 28-July 2, 1999. Vol. II. Budapest: János Bolyai Mathematical Society. 485-498 (2002).
MSC:  60F17
PDFBibTeX XMLCite

Adaptive choice of bootstrap sample sizes. (English) Zbl 1373.62177

de Gunst, Mathisca (ed.) et al., State of the art in probability and statistics. Festschrift for Willem R. van Zwet. Papers from the symposium, Leiden, Netherlands, March 23–26, 1999. Beachwood, OH: IMS, Institute of Mathematical Statistics (ISBN 0-940600-50-1). IMS Lect. Notes, Monogr. Ser. 36, 286-309 (2001).
MSC:  62G09 62D05 62E20
PDFBibTeX XMLCite
Full Text: DOI Euclid

The accuracy of Gaussian approximation in Banach spaces. (English) Zbl 0960.60008

Gamkrelidze, R. V. (ed.) et al., Limit theorems of probability theory. Transl. from the Russian by B. Seckler. Berlin: Springer. 25-111 (2000).
MSC:  60B12 62E10
PDFBibTeX XMLCite

Random fields and central limit theorem in some generalized Hölder spaces. (English) Zbl 0991.60039

Grigelionis, B. (ed.) et al., Probability theory and mathematical statistics. Proceedings of the 7th international Vilnius conference, Vilnius, Lithuania, August, 12-18, 1998. Vilnius: TEV. 599-616 (1999).
MSC:  60G60 60F05
PDFBibTeX XMLCite

On probabilities of large deviations for martingales in Hilbert spaces. (English) Zbl 0965.60017

Watanabe, S. (ed.) et al., Probability theory and mathematical statistics. Proceedings of the seventh Japan-Russia symposium, Tokyo, Japan, July 26-30, 1995. Singapore: World Scientific. 423-437 (1996).
MSC:  60B12 60F10
PDFBibTeX XMLCite

On the asymptotic normality of estimates in the nearly non-stationary AR(1) models. (English. Russian original) Zbl 0897.60026

Lith. Math. J. 36, No. 4, 352-370 (1996); translation from Liet. Mat. Rink. 36, No. 4, 441-463 (1996).
MSC:  60F05
PDFBibTeX XMLCite
Full Text: DOI

On the convergence rate in the multi-dimensional martingale CLT. (English) Zbl 0852.60024

Grigelionis, B. (ed.) et al., Probability theory and mathematical statistics. Proceedings of the sixth Vilnius conference, Vilnius, Lithuania, June 28 - July 3, 1993. Utrecht: VSP. 629-643 (1994).
MSC:  60F05 60G42
PDFBibTeX XMLCite

Accuracy of Gaussian approximation in Banach spaces. (Russian) Zbl 0797.60010

Gamkrelidze, R. V. (ed.) et al., Probability theory - 6. Limit theorems in probability theory. Moskva: Vsesoyuznyj Institut Nauchnoj i Tekhnicheskoj Informatsii, Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya. 81, 39-139 (1991).
MSC:  60B12 62E10
PDFBibTeX XMLCite

Approximation theory in the central limit theorem. Exact results in Banach spaces. Transl. from the Russian by B. Svecevičius and V. Paulauskas. (English) Zbl 0715.60023

Mathematics and Its Applications. Soviet Series 32. Dordrecht etc.: Kluwer Academic Publishers (ISBN 90-277-2825-9). xviii, 156 p. (1989).
Reviewer: F.Götze
PDFBibTeX XMLCite

The accuracy of approximation in the central limit theorem in Banach spaces. (Точност’ аппроксимации в централ’ној предел’ной теореме в банаховых пространствах.) (Russian) Zbl 0708.60005

Vil’nyus (USSR): Mokslas. 188 p. R. 2.00 (1987).
Reviewer: Yu.L.Daletskij
PDFBibTeX XMLCite

Filter Results by …

Document Type

all top 5

Year of Publication

all top 3

Main Field

Software