Efimenko, S. V.; Rybasov, K. V. Distribution of distances between three random points on a sphere. (Ukrainian. English summary) Zbl 1199.60034 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2009, No. 2, 14-16 (2009). MSC: 60D05 PDFBibTeX XMLCite \textit{S. V. Efimenko} and \textit{K. V. Rybasov}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2009, No. 2, 14--16 (2009; Zbl 1199.60034)
Leonenko, N. N.; Li, Zhanbing; Rybasov, K. V. Non-Gaussian limit distributions of solutions of the multi-dimensional Burger equation with random initial data. (English. Ukrainian original) Zbl 0941.60065 Ukr. Math. J. 47, No. 3, 385-392 (1995); translation from Ukr. Mat. Zh. 47, No. 3, 330-336 (1995). Reviewer: A.Ya.Olenko (Kyïv) MSC: 60G60 60G15 PDFBibTeX XMLCite \textit{N. N. Leonenko} et al., Ukr. Mat. Zh. 47, No. 3, 330--336 (1995; Zbl 0941.60065); translation from Ukr. Mat. Zh. 47, No. 3, 330--336 (1995) Full Text: DOI
Leonenko, N. N.; Orsingher, E.; Rybasov, K. V. Limiting distributions of the solutions of the many-dimensional Burgers equation with random initial conditions. II. (English. Russian original) Zbl 0851.60045 Ukr. Math. J. 46, No. 8, 1101-1109 (1994); translation from Ukr. Mat. Zh. 46, No. 8, 1003-1010 (1994). MSC: 60G60 35Q53 60F15 PDFBibTeX XMLCite \textit{N. N. Leonenko} et al., Ukr. Mat. Zh. 46, No. 8, 1003--1010 (1994; Zbl 0851.60045); translation from Ukr. Mat. Zh. 46, No. 8, 1003--1010 (1994) Full Text: DOI
Leonenko, N. N.; Orsingher, E.; Rybasov, K. V. Limiting distributions of the solutions of the multidimensional Burgers equation with random initial conditions. I. (English. Russian original) Zbl 0837.60046 Ukr. Math. J. 46, No. 7, 953-962 (1994); translation from Ukr. Mat. Zh. 46, No. 7, 870-877 (1994). MSC: 60G60 35Q53 60F15 PDFBibTeX XMLCite \textit{N. N. Leonenko} et al., Ukr. Mat. Zh. 46, No. 7, 870--877 (1994; Zbl 0837.60046); translation from Ukr. Mat. Zh. 46, No. 7, 870--877 (1994) Full Text: DOI
Leonenko, N. N.; Orsingher, E.; Rybasov, K. V. Limit distributions of the solutions of the multidimensional Burgers equation with random initial conditions. II. (Russian. English summary) Zbl 0837.60047 Ukr. Mat. Zh. 46, No. 8, 1003-1010 (1994). MSC: 60G60 35Q53 60F15 PDFBibTeX XMLCite \textit{N. N. Leonenko} et al., Ukr. Mat. Zh. 46, No. 8, 1003--1010 (1994; Zbl 0837.60047) Full Text: DOI
Rybasov, K. V. On asymptotic normality of a functional of a homogeneous and isotropic Gaussian random field. (English. Russian original) Zbl 0709.60051 Theory Probab. Math. Stat. 37, 129-135 (1988); translation from Teor. Veroyatn. Mat. Stat., Kiev 37, 111-117 (1987). MSC: 60G60 60F05 60G15 PDFBibTeX XMLCite \textit{K. V. Rybasov}, Theory Probab. Math. Stat. 37, 129--135 (1988; Zbl 0709.60051); translation from Teor. Veroyatn. Mat. Stat., Kiev 37, 111--117 (1987)
Leonenko, N. N.; Rybasov, K. V. Conditions for the spherical means of local functionals of Gaussian fields to converge to a Wiener process. (English. Russian original) Zbl 0633.60071 Theory Probab. Math. Stat. 34, 95-102 (1987); translation from Teor. Veroyatn. Mat. Stat. 34, 85-93 (1986). Reviewer: M.Yadrenko MSC: 60G60 60G15 60F05 PDFBibTeX XMLCite \textit{N. N. Leonenko} and \textit{K. V. Rybasov}, Theory Probab. Math. Stat. 34, 95--102 (1987; Zbl 0633.60071); translation from Teor. Veroyatn. Mat. Stat. 34, 85--93 (1986)