Pahirya, M. M. A continuant and an estimate of the remainder of the interpolating continued \(C\)-fraction. (English) Zbl 07286276 Mat. Stud. 54, No. 1, 32-45 (2020). MSC: 30B70 40A15 41A05 65D05 PDF BibTeX XML Cite \textit{M. M. Pahirya}, Mat. Stud. 54, No. 1, 32--45 (2020; Zbl 07286276) Full Text: DOI
Derkach, Volodymyr; Kovalyov, Ivan Full indefinite Stieltjes moment problem and Padé approximants. (English) Zbl 07277747 Methods Funct. Anal. Topol. 26, No. 1, 1-26 (2020). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 30E05 30B70 46C20 PDF BibTeX XML Cite \textit{V. Derkach} and \textit{I. Kovalyov}, Methods Funct. Anal. Topol. 26, No. 1, 1--26 (2020; Zbl 07277747) Full Text: Link
Klimek, Slawomir; McBride, Matt; Rathnayake, Sumedha; Sakai, Kaoru A value region problem for continued fractions and discrete Dirac equations. (English) Zbl 07276079 Hokkaido Math. J. 49, No. 2, 333-348 (2020). MSC: 30B70 35Q41 PDF BibTeX XML Cite \textit{S. Klimek} et al., Hokkaido Math. J. 49, No. 2, 333--348 (2020; Zbl 07276079) Full Text: DOI Euclid
Komarov, M. A. On the rate of approximation in the unit disc of \(H^1\)-functions by logarithmic derivatives of polynomials with zeros on the boundary. (English. Russian original) Zbl 1446.30056 Izv. Math. 84, No. 3, 437-448 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 3, 3-14 (2020). Reviewer: Devendra Kumar (Al-Baha) MSC: 30E10 30B70 PDF BibTeX XML Cite \textit{M. A. Komarov}, Izv. Math. 84, No. 3, 437--448 (2020; Zbl 1446.30056); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 3, 3--14 (2020) Full Text: DOI
Buslaev, V. I. Convergence of a limit periodic Schur continued fraction. (English. Russian original) Zbl 07215582 Math. Notes 107, No. 5, 701-712 (2020); translation from Mat. Zametki 107, No. 5, 643-656 (2020). MSC: 40A15 30B70 30D99 PDF BibTeX XML Cite \textit{V. I. Buslaev}, Math. Notes 107, No. 5, 701--712 (2020; Zbl 07215582); translation from Mat. Zametki 107, No. 5, 643--656 (2020) Full Text: DOI
Rabideau, Michelle; Schiffler, Ralf Continued fractions and orderings on the Markov numbers. (English) Zbl 1440.13101 Adv. Math. 370, Article ID 107231, 17 p. (2020). MSC: 13F60 11A55 11B83 30B70 PDF BibTeX XML Cite \textit{M. Rabideau} and \textit{R. Schiffler}, Adv. Math. 370, Article ID 107231, 17 p. (2020; Zbl 1440.13101) Full Text: DOI
Han, Guo-Niu Hankel continued fractions and Hankel determinants of the Euler numbers. (English) Zbl 07207632 Trans. Am. Math. Soc. 373, No. 6, 4255-4283 (2020). MSC: 11B68 05A05 05A10 05A15 05A19 11C20 30B70 PDF BibTeX XML Cite \textit{G.-N. Han}, Trans. Am. Math. Soc. 373, No. 6, 4255--4283 (2020; Zbl 07207632) Full Text: DOI
Guo, Wan-Ming; Zhu, Bao-Xuan A generalized ordered Bell polynomial. (English) Zbl 1437.05022 Linear Algebra Appl. 588, 458-470 (2020). MSC: 05A20 05A30 05A15 11B83 30B70 42C05 PDF BibTeX XML Cite \textit{W.-M. Guo} and \textit{B.-X. Zhu}, Linear Algebra Appl. 588, 458--470 (2020; Zbl 1437.05022) Full Text: DOI
Sokal, Alan D. The Euler and Springer numbers as moment sequences. (English) Zbl 1445.05011 Expo. Math. 38, No. 1, 1-26 (2020). Reviewer: Ljuben Mutafchiev (Sofia) MSC: 05A15 11B68 30B70 30E05 44A60 60E99 PDF BibTeX XML Cite \textit{A. D. Sokal}, Expo. Math. 38, No. 1, 1--26 (2020; Zbl 1445.05011) Full Text: DOI
Sokal, Alan D. Wall’s continued-fraction characterization of Hausdorff moment sequences: a conceptual proof. (English) Zbl 1445.44006 Proc. Am. Math. Soc. 148, No. 5, 2111-2116 (2020). MSC: 44A60 05A15 30B70 30E05 PDF BibTeX XML Cite \textit{A. D. Sokal}, Proc. Am. Math. Soc. 148, No. 5, 2111--2116 (2020; Zbl 1445.44006) Full Text: DOI
Bodnar, D. I.; Bilanyk, I. B. Estimates of the pointwise and uniform convergence rate of branched continued fractions with nonequivalent variables. (Ukrainian, English) Zbl 07286259 Mat. Metody Fiz.-Mekh. Polya 62, No. 4, 72-82 (2019). Reviewer: L. N. Chernetskaja (Kyïv) MSC: 40A15 30B70 11A55 PDF BibTeX XML Cite \textit{D. I. Bodnar} and \textit{I. B. Bilanyk}, Mat. Metody Fiz.-Mekh. Polya 62, No. 4, 72--82 (2019; Zbl 07286259)
Kharbuki, Algracia; Singh, Madan Mohan Hurwitz complex continued fraction and complex theory of Pell’s equation \(X^2-DY^2=1\) for some specific valuesof \(D\). (English) Zbl 07273869 Indian J. Math. 61, No. 3, 381-394 (2019). MSC: 11A55 11H55 11J70 11K50 30B70 40A15 PDF BibTeX XML Cite \textit{A. Kharbuki} and \textit{M. M. Singh}, Indian J. Math. 61, No. 3, 381--394 (2019; Zbl 07273869)
Bodnar, D. I.; Dmytryshyn, R. I. Multidimensional associated fractions with independent variables and multiple power series. (English. Ukrainian original) Zbl 1435.32006 Ukr. Math. J. 71, No. 3, 370-386 (2019); translation from Ukr. Mat. Zh. 71, No. 3, 325-349 (2019). MSC: 32A30 30B70 40A15 PDF BibTeX XML Cite \textit{D. I. Bodnar} and \textit{R. I. Dmytryshyn}, Ukr. Math. J. 71, No. 3, 370--386 (2019; Zbl 1435.32006); translation from Ukr. Mat. Zh. 71, No. 3, 325--349 (2019) Full Text: DOI
Bilanyk, I. B. A truncation error bound for some branched continued fractions of the special form. (English) Zbl 1445.30002 Mat. Stud. 52, No. 2, 115-123 (2019). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 30B70 40A15 11J70 PDF BibTeX XML Cite \textit{I. B. Bilanyk}, Mat. Stud. 52, No. 2, 115--123 (2019; Zbl 1445.30002) Full Text: DOI
Al-Fadhel, Tariq A. Lucas polynomials and the fixed points of the Gauss map. (English) Zbl 07163754 Far East J. Appl. Math. 101, No. 2, 113-121 (2019). MSC: 11B39 30B70 PDF BibTeX XML Cite \textit{T. A. Al-Fadhel}, Far East J. Appl. Math. 101, No. 2, 113--121 (2019; Zbl 07163754) Full Text: DOI
Buslaev, V. I. Schur’s criterion for formal power series. (English. Russian original) Zbl 07154829 Sb. Math. 210, No. 11, 1563-1580 (2019); translation from Mat. Sb. 210, No. 11, 58-75 (2019). MSC: 30B10 30B70 PDF BibTeX XML Cite \textit{V. I. Buslaev}, Sb. Math. 210, No. 11, 1563--1580 (2019; Zbl 07154829); translation from Mat. Sb. 210, No. 11, 58--75 (2019) Full Text: DOI
Farooq, K. Structural properties of quotient surfaces of a Hecke group. (English) Zbl 07141364 Conform. Geom. Dyn. 23, 262-282 (2019). MSC: 20H10 30B70 57M50 11K60 PDF BibTeX XML Cite \textit{K. Farooq}, Conform. Geom. Dyn. 23, 262--282 (2019; Zbl 07141364) Full Text: DOI
Dmytryshyn, R. I. On some of convergence domains of multidimensional S-fractions with independent variables. (English) Zbl 1423.32004 Carpathian Math. Publ. 11, No. 1, 54-58 (2019). MSC: 32A17 30B70 40A15 PDF BibTeX XML Cite \textit{R. I. Dmytryshyn}, Carpathian Math. Publ. 11, No. 1, 54--58 (2019; Zbl 1423.32004) Full Text: DOI
Bilanyk, I.; Bodnar, D. I.; Buyak, L. Representation of a quotient of solutions of a four-term linear recurrence relation in the form of a branched continued fraction. (English) Zbl 1420.11015 Carpathian Math. Publ. 11, No. 1, 33-41 (2019). MSC: 11A55 11J70 30B70 40A15 PDF BibTeX XML Cite \textit{I. Bilanyk} et al., Carpathian Math. Publ. 11, No. 1, 33--41 (2019; Zbl 1420.11015) Full Text: DOI
Mansour, Zeinab S. I. Orthogonal polynomials and continued fractions arising from contiguous relations and generalizations of Kummer and \(q\)-Kummer identities. (English) Zbl 1414.33004 Ramanujan J. 49, No. 2, 353-369 (2019). Reviewer: Pierluigi Vellucci (Roma) MSC: 33C05 30B70 33D15 39A10 39A13 PDF BibTeX XML Cite \textit{Z. S. I. Mansour}, Ramanujan J. 49, No. 2, 353--369 (2019; Zbl 1414.33004) Full Text: DOI
Ebisu, Akihito; Iwasaki, Katsunori Contiguous relations, Laplace’s methods, and continued fractions for \({}_3F_2(1)\). (English) Zbl 1416.33011 Ramanujan J. 49, No. 1, 159-213 (2019). MSC: 33C20 30B70 30E10 PDF BibTeX XML Cite \textit{A. Ebisu} and \textit{K. Iwasaki}, Ramanujan J. 49, No. 1, 159--213 (2019; Zbl 1416.33011) Full Text: DOI arXiv
Wegert, Elias About the cover: The continued fraction of Rogers-Ramanujan. (English) Zbl 1419.30003 Comput. Methods Funct. Theory 19, No. 1, 1-2 (2019). MSC: 30B70 11Y65 PDF BibTeX XML Cite \textit{E. Wegert}, Comput. Methods Funct. Theory 19, No. 1, 1--2 (2019; Zbl 1419.30003) Full Text: DOI
Chen, Yichao; Gross, Jonathan L. Genus polynomials and crosscap-number polynomials for ring-like graphs. (English) Zbl 1411.05124 Math. Nachr. 292, No. 4, 760-776 (2019). MSC: 05C30 05C31 05C10 30B70 42C05 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{J. L. Gross}, Math. Nachr. 292, No. 4, 760--776 (2019; Zbl 1411.05124) Full Text: DOI
Kisil, Vladimir V. Möbius-Lie geometry and its extension. (English) Zbl 1415.51003 Mladenov, Ivaïlo M. (ed.) et al., Proceedings of the 20th international conference on geometry, integrability and quantization, Sts. Constantine and Elena (near Varna), Bulgaria, June 2–7, 2018. Sofia: Avangard Prima; Sofia: Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering. Geom. Integrability Quantization 20, 13-61 (2019). MSC: 51B25 30B70 51M05 51N25 51B10 68U05 11E88 68W30 PDF BibTeX XML Cite \textit{V. V. Kisil}, Geom. Integrability Quantization 20, 13--61 (2019; Zbl 1415.51003) Full Text: DOI Euclid
Corcino, Cristina B.; Corcino, Roberto B.; Mezo, István Continued fraction expansions for the Lambert \(W\) function. (English) Zbl 1414.30007 Aequationes Math. 93, No. 2, 485-498 (2019). MSC: 30B70 PDF BibTeX XML Cite \textit{C. B. Corcino} et al., Aequationes Math. 93, No. 2, 485--498 (2019; Zbl 1414.30007) Full Text: DOI
Choque Rivero, A. E.; Mädler, C. On resolvent matrix, Dyukarev-Stieltjes parameters and orthogonal matrix polynomials via \([0, \infty)\)-Stieltjes transformed sequences. (English) Zbl 07032868 Complex Anal. Oper. Theory 13, No. 1, 1-44 (2019). MSC: 30E05 42C05 47A56 30B70 PDF BibTeX XML Cite \textit{A. E. Choque Rivero} and \textit{C. Mädler}, Complex Anal. Oper. Theory 13, No. 1, 1--44 (2019; Zbl 07032868) Full Text: DOI
Rangarajan, R.; Shashikala, P. Orthogonal polynomials connected to Stern-Stolz series. (English) Zbl 1439.11166 Palest. J. Math. 8, No. 1, 262-271 (2019). MSC: 11J70 41A21 30B70 33C45 PDF BibTeX XML Cite \textit{R. Rangarajan} and \textit{P. Shashikala}, Palest. J. Math. 8, No. 1, 262--271 (2019; Zbl 1439.11166) Full Text: Link
Pozza, S.; Strakoš, Z. Algebraic description of the finite Stieltjes moment problem. (English) Zbl 1404.44011 Linear Algebra Appl. 561, 207-227 (2019). MSC: 44A60 30B70 40A15 47B35 47B36 15B99 PDF BibTeX XML Cite \textit{S. Pozza} and \textit{Z. Strakoš}, Linear Algebra Appl. 561, 207--227 (2019; Zbl 1404.44011) Full Text: DOI
Wall, Hubert Stanley Analytic theory of continued fractions. Reprint of the 1948 original published by D. van Nostrand Company, Inc. (English) Zbl 1423.30002 Dover Books on Mathematics. Mineola, NY: Dover Publications (ISBN 978-0-486-82369-0). xiii, 433 p. (2018). MSC: 30-01 30B70 40A15 PDF BibTeX XML Cite \textit{H. S. Wall}, Analytic theory of continued fractions. Reprint of the 1948 original published by D. van Nostrand Company, Inc. Mineola, NY: Dover Publications (2018; Zbl 1423.30002)
Chammam, Wathek; Alhussain, Ziyad A. On formal continued fractions related to power series expansion. (English) Zbl 1422.30005 JP J. Algebra Number Theory Appl. 40, No. 3, 333-340 (2018). MSC: 30B70 11A55 68W25 PDF BibTeX XML Cite \textit{W. Chammam} and \textit{Z. A. Alhussain}, JP J. Algebra Number Theory Appl. 40, No. 3, 333--340 (2018; Zbl 1422.30005) Full Text: DOI
Schmidt, Maxie D. Jacobi-type continued fractions and congruences for binomial coefficients. (English) Zbl 07069729 Integers 18, Paper A46, 21 p. (2018). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11A55 11B65 05A10 30B70 PDF BibTeX XML Cite \textit{M. D. Schmidt}, Integers 18, Paper A46, 21 p. (2018; Zbl 07069729) Full Text: Link
Prats’ovytyĭ, M. B.; Chuĭkov, A. S. Continuous nowhere monotonous function, defined in terms of nega-3-adic and \(A_2\)-continued fractions. (Ukrainian. English summary) Zbl 1424.11111 Zb. Pr. Inst. Mat. NAN Ukr. 15, No. 1, 147-161 (2018). MSC: 11K50 30B70 37E05 PDF BibTeX XML Cite \textit{M. B. Prats'ovytyĭ} and \textit{A. S. Chuĭkov}, Zb. Pr. Inst. Mat. NAN Ukr. 15, No. 1, 147--161 (2018; Zbl 1424.11111)
Dmytryshyn, R. I. Estimates of errors of approximations for multidimensional \(S\)-fraction with independentvariables. (Ukrainian. English summary) Zbl 1424.40015 Bukovyn. Mat. Zh. 6, No. 1-2, 56-59 (2018). MSC: 40A15 30B70 PDF BibTeX XML Cite \textit{R. I. Dmytryshyn}, Bukovyn. Mat. Zh. 6, No. 1--2, 56--59 (2018; Zbl 1424.40015) Full Text: Link
Pahirya, M. M. Representations of the functions \(\sinh z\), \(\cosh z\), \(\sin z\), and \(\cos z\) by continued fractions. (English. Ukrainian original) Zbl 1443.30003 Ukr. Math. J. 70, No. 5, 786-805 (2018); translation from Ukr. Mat. Zh. 70, No. 5, 682-698 (2018). MSC: 30B70 11A55 PDF BibTeX XML Cite \textit{M. M. Pahirya}, Ukr. Math. J. 70, No. 5, 786--805 (2018; Zbl 1443.30003); translation from Ukr. Mat. Zh. 70, No. 5, 682--698 (2018) Full Text: DOI
Golubeva, E. P. Alternating sums of elements of continued fractions and the Minkowski question mark function. (English. Russian original) Zbl 1404.30004 J. Math. Sci., New York 234, No. 5, 595-597 (2018); translation from Zap. Nauchn. Semin. POMI 458, 13-16 (2017). MSC: 30B70 11A55 PDF BibTeX XML Cite \textit{E. P. Golubeva}, J. Math. Sci., New York 234, No. 5, 595--597 (2018; Zbl 1404.30004); translation from Zap. Nauchn. Semin. POMI 458, 13--16 (2017) Full Text: DOI
Boca, Florin P.; Merriman, Claire Coding of geodesics on some modular surfaces and applications to odd and even continued fractions. (English) Zbl 1400.30051 Indag. Math., New Ser. 29, No. 5, 1214-1234 (2018). MSC: 30F99 30B70 PDF BibTeX XML Cite \textit{F. P. Boca} and \textit{C. Merriman}, Indag. Math., New Ser. 29, No. 5, 1214--1234 (2018; Zbl 1400.30051) Full Text: DOI
Bodnar, O. S.; Dmytryshyn, R. I. On the convergence of multidimensional \(S\)-fractions with independent variables. (English) Zbl 1407.40006 Carpathian Math. Publ. 10, No. 1, 58-64 (2018). MSC: 40A15 30B70 PDF BibTeX XML Cite \textit{O. S. Bodnar} and \textit{R. I. Dmytryshyn}, Carpathian Math. Publ. 10, No. 1, 58--64 (2018; Zbl 1407.40006) Full Text: DOI
Antonova, T. M.; Dmytryshyn, M. V.; Vozna, S. M. Some properties of approximants for branched continued fractions of the special form with positive and alternating-sign partial numerators. (English) Zbl 1394.40004 Carpathian Math. Publ. 10, No. 1, 3-13 (2018). MSC: 40A15 30B70 PDF BibTeX XML Cite \textit{T. M. Antonova} et al., Carpathian Math. Publ. 10, No. 1, 3--13 (2018; Zbl 1394.40004) Full Text: DOI
Rangarajan, R.; Shashikala, P. Orthogonal polynomials connected to Stern-Stolz series. (English) Zbl 1439.11165 Palest. J. Math. 7, No. 2, 527-536 (2018). MSC: 11J70 41A21 30B70 33C45 PDF BibTeX XML Cite \textit{R. Rangarajan} and \textit{P. Shashikala}, Palest. J. Math. 7, No. 2, 527--536 (2018; Zbl 1439.11165) Full Text: Link
Zhu, Bao-Xuan Positivity of iterated sequences of polynomials. (English) Zbl 1420.05020 SIAM J. Discrete Math. 32, No. 3, 1993-2010 (2018). MSC: 05A30 05A20 11B37 11B83 30B70 PDF BibTeX XML Cite \textit{B.-X. Zhu}, SIAM J. Discrete Math. 32, No. 3, 1993--2010 (2018; Zbl 1420.05020) Full Text: DOI arXiv
Behera, Kiran Kumar; Swaminathan, A. Orthogonal polynomials related to \(_{g}\)-fractions with missing terms. (English) Zbl 1402.42037 Comput. Methods Funct. Theory 18, No. 2, 193-219 (2018). Reviewer: Kenier Castillo (Coimbra) MSC: 42C05 30B70 30C80 PDF BibTeX XML Cite \textit{K. K. Behera} and \textit{A. Swaminathan}, Comput. Methods Funct. Theory 18, No. 2, 193--219 (2018; Zbl 1402.42037) Full Text: DOI arXiv
Buslaev, V. I. On singular points of meromorphic functions determined by continued fractions. (English. Russian original) Zbl 1400.30004 Math. Notes 103, No. 4, 527-536 (2018); translation from Mat. Zametki 103, No. 4, 490-502 (2018). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 30B70 30D30 32A20 40A15 PDF BibTeX XML Cite \textit{V. I. Buslaev}, Math. Notes 103, No. 4, 527--536 (2018; Zbl 1400.30004); translation from Mat. Zametki 103, No. 4, 490--502 (2018) Full Text: DOI
Chen, Yichao; Gross, Jonathan L. An Euler-genus approach to the calculation of the crosscap-number polynomial. (English) Zbl 1393.05159 J. Graph Theory 88, No. 1, 80-100 (2018). MSC: 05C31 30B70 42C05 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{J. L. Gross}, J. Graph Theory 88, No. 1, 80--100 (2018; Zbl 1393.05159) Full Text: DOI
Buslaev, Viktor I. Continued fractions with limit periodic coefficients. (English. Russian original) Zbl 1393.30005 Sb. Math. 209, No. 2, 187-205 (2018); translation from Mat. Sb. 209, No. 2, 47-65 (2018). MSC: 30B70 PDF BibTeX XML Cite \textit{V. I. Buslaev}, Sb. Math. 209, No. 2, 187--205 (2018; Zbl 1393.30005); translation from Mat. Sb. 209, No. 2, 47--65 (2018) Full Text: DOI
Rabideau, Michelle \(F\)-polynomial formula from continued fractions. (English) Zbl 1423.13130 J. Algebra 509, 467-475 (2018). MSC: 13F60 11A55 30B70 PDF BibTeX XML Cite \textit{M. Rabideau}, J. Algebra 509, 467--475 (2018; Zbl 1423.13130) Full Text: DOI arXiv
Saikia, Nipen; Boruah, Chayanika Some results on a special case of a general continued fraction of Ramanujan. (English) Zbl 1390.33033 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 64, No. 1, 165-183 (2018). MSC: 33D15 11A55 30B70 PDF BibTeX XML Cite \textit{N. Saikia} and \textit{C. Boruah}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 64, No. 1, 165--183 (2018; Zbl 1390.33033) Full Text: DOI
Çanakçı, İlke; Schiffler, Ralf Cluster algebras and continued fractions. (English) Zbl 1437.13033 Compos. Math. 154, No. 3, 565-593 (2018). Reviewer: Alexey Ustinov (Khabarovsk) MSC: 13F60 11A55 30B70 PDF BibTeX XML Cite \textit{İ. Çanakçı} and \textit{R. Schiffler}, Compos. Math. 154, No. 3, 565--593 (2018; Zbl 1437.13033) Full Text: DOI arXiv
Jenkinson, O.; Pollicott, M. Rigorous effective bounds on the Hausdorff dimension of continued fraction Cantor sets: A hundred decimal digits for the dimension of \(E_{2}\). (English) Zbl 1386.30039 Adv. Math. 325, 87-115 (2018). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 30E10 28A78 30B70 PDF BibTeX XML Cite \textit{O. Jenkinson} and \textit{M. Pollicott}, Adv. Math. 325, 87--115 (2018; Zbl 1386.30039) Full Text: DOI
Kuchminska, Kh. Yo.; Vozna, S. M. Development of \(N\)-multiple power series into \(N\)-dimensional regular \(C\)-fraction. (Ukrainian, English) Zbl 1449.30005 Mat. Metody Fiz.-Mekh. Polya 60, No. 3, 70-75 (2017). Reviewer: L. N. Chernetskaja (Kyïv) MSC: 30B70 40A15 PDF BibTeX XML Cite \textit{Kh. Yo. Kuchminska} and \textit{S. M. Vozna}, Mat. Metody Fiz.-Mekh. Polya 60, No. 3, 70--75 (2017; Zbl 1449.30005)
Dmytryshyn, R. I. Convergence of some branched continued fractions with independent variables. (English) Zbl 1433.11003 Mat. Stud. 47, No. 2, 150-159 (2017). MSC: 11A55 11J70 30B70 40A15 PDF BibTeX XML Cite \textit{R. I. Dmytryshyn}, Mat. Stud. 47, No. 2, 150--159 (2017; Zbl 1433.11003) Full Text: DOI
Kilicman, Adem; Silambarasan, Rathinavel; Altun, Omer Quasi associated continued fractions and Hankel determinants of Dixon elliptic functions via Sumudu transform. (English) Zbl 1412.33032 J. Nonlinear Sci. Appl. 10, No. 7, 4000-4014 (2017). MSC: 33E05 30B70 44A10 PDF BibTeX XML Cite \textit{A. Kilicman} et al., J. Nonlinear Sci. Appl. 10, No. 7, 4000--4014 (2017; Zbl 1412.33032) Full Text: DOI
Elizalde, Sergi Continued fractions for permutation statistics. (English) Zbl 1401.05011 Discrete Math. Theor. Comput. Sci. 19, No. 2, Paper No. 11, 24 p. (2017). MSC: 05A05 05A15 05A19 30B70 05A18 PDF BibTeX XML Cite \textit{S. Elizalde}, Discrete Math. Theor. Comput. Sci. 19, No. 2, Paper No. 11, 24 p. (2017; Zbl 1401.05011) Full Text: Link arXiv
Gladun, V. R.; Manziĭ, O. S.; Pabyrivs’kyĭ, V. V. Some properties of the tails of the approximant of branched continued fractions with positive elements. (Ukrainian. English summary) Zbl 1413.30018 Visn. Derzh. Univ. L’viv. Politekh. 871, 65-69 (2017). MSC: 30B70 PDF BibTeX XML Cite \textit{V. R. Gladun} et al., Visn. Derzh. Univ. L'viv. Politekh. 871, 65--69 (2017; Zbl 1413.30018)
Antonova, T. M.; Vozna, S. M. On one analogue of the method of fundamental inequalities for the study of convergence of branched continued fractions of a special form. (Ukrainian. English summary) Zbl 1413.30017 Visn. Derzh. Univ. L’viv. Politekh. 871, 5-12 (2017). MSC: 30B70 41A30 PDF BibTeX XML Cite \textit{T. M. Antonova} and \textit{S. M. Vozna}, Visn. Derzh. Univ. L'viv. Politekh. 871, 5--12 (2017; Zbl 1413.30017)
Shmoĭlov, V. I.; Korovin, Ya. S. Continued fractions. Bibliographic index. With CD-ROM. 4th edition. (Непрерывные дроби. Библиографический указатель.) (Russian) Zbl 1390.00014 Rostov-on-Don: Izd. Yuzhnogo Federal’nogo Universiteta. 381 p. (2017). MSC: 00A15 11A55 11J70 11K50 40A15 30B70 65D05 PDF BibTeX XML Cite \textit{V. I. Shmoĭlov} and \textit{Ya. S. Korovin}, Непрерывные дроби. Библиографический указатель (Russian). 4th edition. Rostov-on-Don: Izd. Yuzhnogo Federal'nogo Universiteta (2017; Zbl 1390.00014)
Dmytryshyn, R. I. On convergence of multidimensional \(J\)-fraction with nonequivalent variables. (Ukrainian. English summary) Zbl 1399.30015 Bukovyn. Mat. Zh. 5, No. 3-4, 71-76 (2017). MSC: 30B70 PDF BibTeX XML Cite \textit{R. I. Dmytryshyn}, Bukovyn. Mat. Zh. 5, No. 3--4, 71--76 (2017; Zbl 1399.30015) Full Text: Link
Choque-Rivero, Abdon E. A multiplicative representation of the resolvent matrix of the truncated Hausdorff matrix moment problem via new Dyukarev-Stieltjes parameters. (English) Zbl 1399.30143 Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 85, 16-42 (2017). MSC: 30E05 42C05 47A56 30B70 PDF BibTeX XML Cite \textit{A. E. Choque-Rivero}, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 85, 16--42 (2017; Zbl 1399.30143) Full Text: Link
Saikia, Nipen; Jubaraj, Chetry New theorems on explicit evaluation of a parameter of Ramanujan’s \(\chi(q)\) function. (English) Zbl 1390.30050 Notes Number Theory Discrete Math. 23, No. 1, 7-18 (2017). MSC: 30E99 30B70 PDF BibTeX XML Cite \textit{N. Saikia} and \textit{C. Jubaraj}, Notes Number Theory Discrete Math. 23, No. 1, 7--18 (2017; Zbl 1390.30050) Full Text: Link
Dmytryshyn, R. I. On the convergence criterion for branched continued fractions with independent variables. (English) Zbl 1390.11019 Carpathian Math. Publ. 9, No. 2, 120-127 (2017). MSC: 11A55 11J70 30B70 40A15 PDF BibTeX XML Cite \textit{R. I. Dmytryshyn}, Carpathian Math. Publ. 9, No. 2, 120--127 (2017; Zbl 1390.11019) Full Text: DOI
Buslaev, V. I. On the Van Vleck theorem for limit-periodic continued fractions of general form. (English. Russian original) Zbl 1394.30001 Proc. Steklov Inst. Math. 298, 68-93 (2017); translation from Tr. Mat. Inst. Steklova 298, 75-100 (2017). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 30B70 40A15 PDF BibTeX XML Cite \textit{V. I. Buslaev}, Proc. Steklov Inst. Math. 298, 68--93 (2017; Zbl 1394.30001); translation from Tr. Mat. Inst. Steklova 298, 75--100 (2017) Full Text: DOI
Choque-Rivero, A. E. Relations between the orthogonal matrix polynomials on \([a,b]\), Dyukarev-Stieltjes parameters, and Schur complements. (English) Zbl 1407.30016 Spec. Matrices 5, 303-318 (2017). Reviewer: Vladimir A. Derkach (Donetsk) MSC: 30E05 47A56 30B70 PDF BibTeX XML Cite \textit{A. E. Choque-Rivero}, Spec. Matrices 5, 303--318 (2017; Zbl 1407.30016) Full Text: DOI
Singh, Sunil; Sahni, Nidhi On certain continued fraction representation for ratio of poly-basic hypergeometric series. (English) Zbl 1378.33003 South East Asian J. Math. Math. Sci. 13, No. 1, 57-64 (2017). MSC: 33C05 30B70 PDF BibTeX XML Cite \textit{S. Singh} and \textit{N. Sahni}, South East Asian J. Math. Math. Sci. 13, No. 1, 57--64 (2017; Zbl 1378.33003)
Liu, Lily Li; Ma, Dan Some polynomials related to Dowling lattices and \(\mathrm{x}\)-Stieltjes moment sequences. (English) Zbl 1370.05008 Linear Algebra Appl. 533, 195-209 (2017). MSC: 05A10 05A20 30B70 PDF BibTeX XML Cite \textit{L. L. Liu} and \textit{D. Ma}, Linear Algebra Appl. 533, 195--209 (2017; Zbl 1370.05008) Full Text: DOI
Kozlov, V. V. A summation formula for divergent continued fractions. (English. Russian original) Zbl 1381.40006 Dokl. Math. 95, No. 3, 240-242 (2017); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 474, No. 4, 410-412 (2017). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 40A15 30B70 11A55 PDF BibTeX XML Cite \textit{V. V. Kozlov}, Dokl. Math. 95, No. 3, 240--242 (2017; Zbl 1381.40006); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 474, No. 4, 410--412 (2017) Full Text: DOI
Bodnar, D. I.; Bilanyk, I. B. Convergence criterion for branched contnued fractions of the special form with positive elements. (English) Zbl 1370.40003 Carpathian Math. Publ. 9, No. 1, 13-21 (2017). MSC: 40A15 30B70 PDF BibTeX XML Cite \textit{D. I. Bodnar} and \textit{I. B. Bilanyk}, Carpathian Math. Publ. 9, No. 1, 13--21 (2017; Zbl 1370.40003) Full Text: DOI
Derevyagin, Maxim A note on Wall’s modification of the Schur algorithm and linear pencils of Jacobi matrices. (English) Zbl 06764071 J. Approx. Theory 221, 1-21 (2017). Reviewer: Adhemar Bultheel (Leuven) MSC: 47A57 30E05 30B70 42C05 47B36 PDF BibTeX XML Cite \textit{M. Derevyagin}, J. Approx. Theory 221, 1--21 (2017; Zbl 06764071) Full Text: DOI arXiv
Shmoĭlov, V. I.; Korovin, Ya. S. Solution of systems of linear algebraic equations by continued fractions. (Решение систем линейных алгебраических уравнений непрерывными дробями.) (Russian) Zbl 1377.40001 Rostov-on-Don: Izd. Yuzhnogo Federal’nogo Universiteta. 382 p. (2017). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 40-02 11A55 11J70 30B70 33F05 40A05 PDF BibTeX XML Cite \textit{V. I. Shmoĭlov} and \textit{Ya. S. Korovin}, Решение систем линейных алгебраических уравнений непрерывными дробями (Russian). Rostov-on-Don: Izd. Yuzhnogo Federal'nogo Universiteta (2017; Zbl 1377.40001)
Kozlov, V. V. Cauchy’s mean value theorem and continued fractions. (English. Russian original) Zbl 1372.30004 Russ. Math. Surv. 72, No. 1, 182-184 (2017); translation from Usp. Mat. Nauk 72, No. 1, 195-196 (2017). Reviewer: Jacques Mayer (Berlin) MSC: 30B70 40A15 PDF BibTeX XML Cite \textit{V. V. Kozlov}, Russ. Math. Surv. 72, No. 1, 182--184 (2017; Zbl 1372.30004); translation from Usp. Mat. Nauk 72, No. 1, 195--196 (2017) Full Text: DOI
Silverio, Andrew E. Reversing palindromic enumeration in rank-two free groups. (English) Zbl 1400.20025 Exp. Math. 26, No. 3, 364-372 (2017). MSC: 20F10 20H10 20E05 30F40 11A55 30B70 68R15 PDF BibTeX XML Cite \textit{A. E. Silverio}, Exp. Math. 26, No. 3, 364--372 (2017; Zbl 1400.20025) Full Text: DOI arXiv
Antonova, T. M.; Vozna, S. M. Some properties of approximates for branched continued fraction of a special form with nonpositive partial numerators. (Ukrainian. English summary) Zbl 1374.40002 Bukovyn. Mat. Zh. 5, No. 1-2, 6-15 (2017). MSC: 40A15 30B70 PDF BibTeX XML Cite \textit{T. M. Antonova} and \textit{S. M. Vozna}, Bukovyn. Mat. Zh. 5, No. 1--2, 6--15 (2017; Zbl 1374.40002) Full Text: Link
Priyadarshi, Amit Lower bound on the Hausdorff dimension of a set of complex continued fractions. (English) Zbl 1362.30003 J. Math. Anal. Appl. 449, No. 1, 91-95 (2017). MSC: 30B70 28A78 PDF BibTeX XML Cite \textit{A. Priyadarshi}, J. Math. Anal. Appl. 449, No. 1, 91--95 (2017; Zbl 1362.30003) Full Text: DOI
Mahesh Kumar, M. C.; Dharmendra, B. N.; Guruprasad, P. S. Some new modular equations of ratio’s of Ramanujan quantity. (English) Zbl 1350.33032 Palest. J. Math. 6, No. 1, 173-178 (2017). MSC: 33D15 40A15 11A55 30B70 PDF BibTeX XML Cite \textit{M. C. Mahesh Kumar} et al., Palest. J. Math. 6, No. 1, 173--178 (2017; Zbl 1350.33032) Full Text: Link
Surekha, M. S. On the modular relations and dissections for a continued fraction of order sixteen. (English) Zbl 1409.11006 Palest. J. Math. 6, No. 1, 119-132 (2017). MSC: 11A55 30B70 PDF BibTeX XML Cite \textit{M. S. Surekha}, Palest. J. Math. 6, No. 1, 119--132 (2017; Zbl 1409.11006) Full Text: Link
Short, Ian The parabola theorem on continued fractions. (English) Zbl 1364.30006 Comput. Methods Funct. Theory 16, No. 4, 653-675 (2016). MSC: 30B70 40A15 30F45 PDF BibTeX XML Cite \textit{I. Short}, Comput. Methods Funct. Theory 16, No. 4, 653--675 (2016; Zbl 1364.30006) Full Text: DOI
Kuchminska, Kh. Yo. A Worpitzky boundary theorem for branched continued fractions of the special form. (English) Zbl 1401.40005 Carpathian Math. Publ. 8, No. 2, 272-278 (2016). MSC: 40A15 30B70 PDF BibTeX XML Cite \textit{Kh. Yo. Kuchminska}, Carpathian Math. Publ. 8, No. 2, 272--278 (2016; Zbl 1401.40005) Full Text: DOI
Dmytryshyn, R. I. A multidimensional generalization of the Rutishauser qd-algorithm. (English) Zbl 1401.40004 Carpathian Math. Publ. 8, No. 2, 230-238 (2016). MSC: 40A15 30B10 30B70 65B10 PDF BibTeX XML Cite \textit{R. I. Dmytryshyn}, Carpathian Math. Publ. 8, No. 2, 230--238 (2016; Zbl 1401.40004) Full Text: DOI
Shmoĭlov, V. I.; Voĭtulevich, V. Yu. Continued fractions. Bibliographic index. 3rd revised edition. (Непрерывные дроби. Библиографический указатель.) (Russian) Zbl 1353.00001 Rostov-on-Don: Izd. Yuzhnogo Federal’nogo Universiteta. 350 p. (2016). MSC: 00A15 11-03 11A55 11J70 11K50 40A15 40-03 30B70 65D05 PDF BibTeX XML Cite \textit{V. I. Shmoĭlov} and \textit{V. Yu. Voĭtulevich}, Непрерывные дроби. Библиографический указатель (Russian). 3rd revised edition. Rostov-on-Don: Izd. Yuzhnogo Federal'nogo Universiteta (2016; Zbl 1353.00001)
Buslaev, V. I. An analog of Gonchar’s theorem for the \(m\)-point version of Leighton’s conjecture. (English. Russian original) Zbl 1367.30004 Proc. Steklov Inst. Math. 293, 127-139 (2016); translation from Tr. Mat. Inst. Steklova 293, 133-145 (2016). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 30B70 11A55 40A15 PDF BibTeX XML Cite \textit{V. I. Buslaev}, Proc. Steklov Inst. Math. 293, 127--139 (2016; Zbl 1367.30004); translation from Tr. Mat. Inst. Steklova 293, 133--145 (2016) Full Text: DOI
Han, Guo-Niu Hankel continued fraction and its applications. (English) Zbl 1346.05002 Adv. Math. 303, 295-321 (2016). MSC: 05-04 05A15 11A55 11B50 11B85 11C20 11J82 11T99 11Y65 15-04 15A15 15B33 30B70 PDF BibTeX XML Cite \textit{G.-N. Han}, Adv. Math. 303, 295--321 (2016; Zbl 1346.05002) Full Text: DOI arXiv
Saikia, Nipen A connection between the modular \(j\)-invariant and the Ramanujan’s cubic continued fraction. (English) Zbl 1346.30001 Palest. J. Math. 5, No. 1, 127-130 (2016). MSC: 30B70 33D15 33D90 11F20 PDF BibTeX XML Cite \textit{N. Saikia}, Palest. J. Math. 5, No. 1, 127--130 (2016; Zbl 1346.30001) Full Text: Link
Saikia, Nipen New theta-function identities and general theorems for the explicit evaluations of Ramanujan’s continued fractions. (English) Zbl 1351.30002 Arab. J. Math. 5, No. 3, 145-158 (2016). MSC: 30B70 11A55 40A15 PDF BibTeX XML Cite \textit{N. Saikia}, Arab. J. Math. 5, No. 3, 145--158 (2016; Zbl 1351.30002) Full Text: DOI
Makarov, V. L.; Demkiv, I. I. Generalization of the Thiele fraction. (Ukrainian. English summary) Zbl 1363.41006 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2016, No. 2, 17-24 (2016). MSC: 41A05 30B70 65D05 41A63 PDF BibTeX XML Cite \textit{V. L. Makarov} and \textit{I. I. Demkiv}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2016, No. 2, 17--24 (2016; Zbl 1363.41006) Full Text: DOI
Makarov, V. L.; Demkiv, I. I. An integral interpolation chain fraction of the Thiele type. (Russian. English summary) Zbl 1363.41005 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2016, No. 1, 12-18 (2016). MSC: 41A05 30B70 65D05 PDF BibTeX XML Cite \textit{V. L. Makarov} and \textit{I. I. Demkiv}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2016, No. 1, 12--18 (2016; Zbl 1363.41005) Full Text: DOI
Behera, Kiran Kumar; Sri Ranga, A.; Swaminathan, A. Orthogonal polynomials associated with complementary chain sequences. (English) Zbl 1344.42024 SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 075, 17 p. (2016). MSC: 42C05 33C45 30B70 PDF BibTeX XML Cite \textit{K. K. Behera} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 075, 17 p. (2016; Zbl 1344.42024) Full Text: DOI arXiv
Baxa, C. Book review of: O. Karpenkov, Geometry of continued fractions. (English) Zbl 1346.00012 Monatsh. Math. 180, No. 3, 662 (2016). MSC: 00A17 11-02 11J70 11A55 11H55 11K50 30B70 40A15 PDF BibTeX XML Cite \textit{C. Baxa}, Monatsh. Math. 180, No. 3, 662 (2016; Zbl 1346.00012) Full Text: DOI
You, Xu; Chen, Di-Rong; Shi, Hong Continued fraction inequalities related to \((1+\frac{1}{x})^x\). (English) Zbl 1383.11132 J. Math. Anal. Appl. 443, No. 2, 1090-1094 (2016). MSC: 11Y65 11A55 11J70 26D07 30B70 41A60 PDF BibTeX XML Cite \textit{X. You} et al., J. Math. Anal. Appl. 443, No. 2, 1090--1094 (2016; Zbl 1383.11132) Full Text: DOI
Saikia, Nipen Some new identities for a continued fraction of Ramanujan. (English) Zbl 1339.33019 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 62, No. 1, 151-164 (2016). MSC: 33D15 11A55 30B70 PDF BibTeX XML Cite \textit{N. Saikia}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 62, No. 1, 151--164 (2016; Zbl 1339.33019) Full Text: DOI
Bonan-Hamada, C.; Jones, W. B.; Njåstad, O. Survey article: continued fractions associated with Wiener-Levinson filters, frequency analysis, moment theory and polynomials orthogonal on the unit circle. (English) Zbl 1338.30004 Rocky Mt. J. Math. 46, No. 1, 1-49 (2016). MSC: 30B70 30E05 PDF BibTeX XML Cite \textit{C. Bonan-Hamada} et al., Rocky Mt. J. Math. 46, No. 1, 1--49 (2016; Zbl 1338.30004) Full Text: DOI Euclid
Saikia, Nipen Some properties, explicit evaluations, and applications of Ramanujan’s remarkable product of theta functions. (English) Zbl 1333.30002 Acta Math. Vietnam. 41, No. 1, 133-142 (2016). MSC: 30B70 30E99 PDF BibTeX XML Cite \textit{N. Saikia}, Acta Math. Vietnam. 41, No. 1, 133--142 (2016; Zbl 1333.30002) Full Text: DOI
Beardon, Alan F. Möbius maps and periodic continued fractions. (English) Zbl 1353.11009 Math. Mag. 88, No. 4, 272-277 (2015). MSC: 11A55 30B70 30F35 PDF BibTeX XML Cite \textit{A. F. Beardon}, Math. Mag. 88, No. 4, 272--277 (2015; Zbl 1353.11009) Full Text: DOI
Dmytryshyn, R. I. Associated branched continued fractions with two independent variables. (English. Ukrainian original) Zbl 1349.30011 Ukr. Math. J. 66, No. 9, 1312-1323 (2015); translation from Ukr. Mat. Zh. 66, No. 9, 1175-1184 (2014). MSC: 30B70 40A15 11J70 PDF BibTeX XML Cite \textit{R. I. Dmytryshyn}, Ukr. Math. J. 66, No. 9, 1312--1323 (2015; Zbl 1349.30011); translation from Ukr. Mat. Zh. 66, No. 9, 1175--1184 (2014) Full Text: DOI
Symotyuk, M.; Medvid’, O. The convergence of continued Nörlund fraction to a ratio of hypergeometric functions in the field of p-adic numbers. (Ukrainian. English summary) Zbl 1363.30008 Mat. Visn. Nauk. Tov. Im. Shevchenka 12, 52-60 (2015). MSC: 30B70 40A15 PDF BibTeX XML Cite \textit{M. Symotyuk} and \textit{O. Medvid'}, Mat. Visn. Nauk. Tov. Im. Shevchenka 12, 52--60 (2015; Zbl 1363.30008)
Derkach, Vladimir; Kovalyov, Ivan On a class of generalized Stieltjes continued fractions. (English) Zbl 1363.47055 Methods Funct. Anal. Topol. 21, No. 4, 315-335 (2015). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 47B36 30B70 40A15 42C05 PDF BibTeX XML Cite \textit{V. Derkach} and \textit{I. Kovalyov}, Methods Funct. Anal. Topol. 21, No. 4, 315--335 (2015; Zbl 1363.47055)
Bodnar, D. I.; Voznyak, O. G.; Myhalchuk, R. I. Convergence criteria for branched continued fraction with positive elements. (Ukrainian, English) Zbl 1349.40007 Mat. Metody Fiz.-Mekh. Polya 58, No. 1, 57-64 (2015); translation in J. Math. Sci., New York 222, No. 1, 70-80 (2017). Reviewer: R. V. Mullajonov (Andizhan) MSC: 40A15 30B70 PDF BibTeX XML Cite \textit{D. I. Bodnar} et al., Mat. Metody Fiz.-Mekh. Polya 58, No. 1, 57--64 (2015; Zbl 1349.40007); translation in J. Math. Sci., New York 222, No. 1, 70--80 (2017) Full Text: DOI
Ciolan, Emil-Alexandru; Neiss, Robert Axel Convergence properties of the classical and generalized Rogers-Ramanujan continued fraction. (English) Zbl 1342.11012 Res. Number Theory 1, Paper No. 15, 18 p. (2015). MSC: 11A55 30B70 40A15 PDF BibTeX XML Cite \textit{E.-A. Ciolan} and \textit{R. A. Neiss}, Res. Number Theory 1, Paper No. 15, 18 p. (2015; Zbl 1342.11012) Full Text: DOI arXiv
Bubnyak, M. M. Convergence criteria for periodic branched continued fractions of a special form. (Ukrainian. English summary) Zbl 1340.40004 Zb. Pr. Inst. Mat. NAN Ukr. 12, No. 4, 54-66 (2015). MSC: 40A15 30B70 PDF BibTeX XML Cite \textit{M. M. Bubnyak}, Zb. Pr. Inst. Mat. NAN Ukr. 12, No. 4, 54--66 (2015; Zbl 1340.40004)
Chen, Yichao; Gross, Jonathan L.; Mansour, Toufik Log-concavity of genus distributions for circular ladders. (English) Zbl 1328.05053 Math. Nachr. 288, No. 17-18, 1952-1969 (2015). MSC: 05C10 30B70 42C05 PDF BibTeX XML Cite \textit{Y. Chen} et al., Math. Nachr. 288, No. 17--18, 1952--1969 (2015; Zbl 1328.05053) Full Text: DOI
Bodnar, D. I.; Bubniak, M. M. On convergence \((2,1,\ldots,1)\)-periodic branched continued fraction of the special form. (On convergence of \((2,1,\ldots,1)\)-periodic branched continued fraction of the special form.) (English) Zbl 1329.40002 Carpathian Math. Publ. 7, No. 2, 148-154 (2015). MSC: 40A15 30B70 PDF BibTeX XML Cite \textit{D. I. Bodnar} and \textit{M. M. Bubniak}, Carpathian Math. Publ. 7, No. 2, 148--154 (2015; Zbl 1329.40002) Full Text: DOI
Adiga, Chandrashekar; Vanitha, A.; Surekha, M. S. On the series expansion of the Ramanujan’s continued fraction of order six. (English) Zbl 1330.11005 Proc. Jangjeon Math. Soc. 18, No. 3, 343-352 (2015). MSC: 11A55 30B70 PDF BibTeX XML Cite \textit{C. Adiga} et al., Proc. Jangjeon Math. Soc. 18, No. 3, 343--352 (2015; Zbl 1330.11005)
Saikia, Nipen Some \(q\)-continued fractions of Ramanujan, their explicit values, and equalities. (English) Zbl 1329.33023 Afr. Mat. 26, No. 7-8, 1359-1370 (2015). MSC: 33D15 11A55 30B70 PDF BibTeX XML Cite \textit{N. Saikia}, Afr. Mat. 26, No. 7--8, 1359--1370 (2015; Zbl 1329.33023) Full Text: DOI